Download Free Nye Samling Af Det Kongelige Danske Videnskabernes Selskabs Skrifter Book in PDF and EPUB Free Download. You can read online Nye Samling Af Det Kongelige Danske Videnskabernes Selskabs Skrifter and write the review.

This ground-breaking book investigates how the learning and teaching of mathematics can be improved through integrating the history of mathematics into all aspects of mathematics education: lessons, homework, texts, lectures, projects, assessment, and curricula. It draws upon evidence from the experience of teachers as well as national curricula, textbooks, teacher education practices, and research perspectives across the world. It includes a 300-item annotated bibliography of recent work in the field in eight languages.
By virtue of their special algebraic structures, Pythagorean-hodograph (PH) curves offer unique advantages for computer-aided design and manufacturing, robotics, motion control, path planning, computer graphics, animation, and related fields. This book offers a comprehensive and self-contained treatment of the mathematical theory of PH curves, including algorithms for their construction and examples of their practical applications. It emphasizes the interplay of ideas from algebra and geometry and their historical origins and includes many figures, worked examples, and detailed algorithm descriptions.
This book presents the state-of-the-art research on the teaching and learning of linear algebra in the first year of university, in an international perspective. It provides university teachers in charge of linear algebra courses with a wide range of information from works including theoretical and experimental issues.
The imaginary unit i = √-1 has been used by mathematicians for nearly five-hundred years, during which time its physical meaning has been a constant challenge. Unfortunately, René Descartes referred to it as “imaginary”, and the use of the term “complex number” compounded the unnecessary mystery associated with this amazing object. Today, i = √-1 has found its way into virtually every branch of mathematics, and is widely employed in physics and science, from solving problems in electrical engineering to quantum field theory. John Vince describes the evolution of the imaginary unit from the roots of quadratic and cubic equations, Hamilton’s quaternions, Cayley’s octonions, to Grassmann’s geometric algebra. In spite of the aura of mystery that surrounds the subject, John Vince makes the subject accessible and very readable. The first two chapters cover the imaginary unit and its integration with real numbers. Chapter 3 describes how complex numbers work with matrices, and shows how to compute complex eigenvalues and eigenvectors. Chapters 4 and 5 cover Hamilton’s invention of quaternions, and Cayley’s development of octonions, respectively. Chapter 6 provides a brief introduction to geometric algebra, which possesses many of the imaginary qualities of quaternions, but works in space of any dimension. The second half of the book is devoted to applications of complex numbers, quaternions and geometric algebra. John Vince explains how complex numbers simplify trigonometric identities, wave combinations and phase differences in circuit analysis, and how geometric algebra resolves geometric problems, and quaternions rotate 3D vectors. There are two short chapters on the Riemann hypothesis and the Mandelbrot set, both of which use complex numbers. The last chapter references the role of complex numbers in quantum mechanics, and ends with Schrödinger’s famous wave equation. Filled with lots of clear examples and useful illustrations, this compact book provides an excellent introduction to imaginary mathematics for computer science.
The book is the first in the trilogy which will bring you to the fascinating world of numbers and operations with them. Numbers provide information about myriads of things. Together with operations, numbers constitute arithmetic forming in basic intellectual instruments of theoretical and practical activity of people and offering powerful tools for representation, acquisition, transmission, processing, storage, and management of information about the world.The history of numbers and arithmetic is the topic of a variety of books and at the same time, it is extensively presented in many books on the history of mathematics. However, all of them, at best, bring the reader to the end of the 19th century without including the developments in these areas in the 20th century and later. Besides, such books consider and describe only the most popular classes of numbers, such as whole numbers or real numbers. At the same time, a diversity of new classes of numbers and arithmetic were introduced in the 20th century.This book looks into the chronicle of numbers and arithmetic from ancient times all the way to 21st century. It also includes the developments in these areas in the 20th century and later. A unique aspect of this book is its information orientation of the exposition of the history of numbers and arithmetic.
This book explores the notion of how number ideas, and ideas of number, have grown from ancient to modern times throughout history. It looks at how different types of number and views of numbers (and their meaning and applications) have varied across cutures over time, and combines historical consideration with the mathematics. The book illustrates some of the real problems and subtleties of number, including counting, calculation, measuring and using machines, which ancient and modern people have grappled with - and continue to do so today.
This revised and extended edition provides in-depth insights into the benefits and untapped potential of lichen-derived bioactive compounds. The whole spectrum of these compounds’ biological and medical functions, from antibiotic to antiviral and anti-carcinogenic properties, is presented. In addition, a new chapter discusses the anti-neurodegenerative and anti-diabetic activities of lichenic secondary metabolites. Given its scope, the book offers a valuable asset for students and researchers in this field.