Download Free Numerical Study Of The Properties Of Compact Stars Book in PDF and EPUB Free Download. You can read online Numerical Study Of The Properties Of Compact Stars and write the review.

This introduction to compact star physics explains key concepts from general relativity, thermodynamics and nuclear physics.
A whole decades research collated, organised and synthesised into one single book! Following a 60-page review of the seminal treatises of Misner, Thorne, Wheeler and Weinberg on general relativity, Glendenning goes on to explore the internal structure of compact stars, white dwarfs, neutron stars, hybrids, strange quark stars, both the counterparts of neutron stars as well as of dwarfs. This is a self-contained treatment and will be of interest to graduate students in physics and astrophysics as well as others entering the field.
Relativistic hydrodynamics is a very successful theoretical framework to describe the dynamics of matter from scales as small as those of colliding elementary particles, up to the largest scales in the universe. This book provides an up-to-date, lively, and approachable introduction to the mathematical formalism, numerical techniques, and applications of relativistic hydrodynamics. The topic is typically covered either by very formal or by very phenomenological books, but is instead presented here in a form that will be appreciated both by students and researchers in the field. The topics covered in the book are the results of work carried out over the last 40 years, which can be found in rather technical research articles with dissimilar notations and styles. The book is not just a collection of scattered information, but a well-organized description of relativistic hydrodynamics, from the basic principles of statistical kinetic theory, down to the technical aspects of numerical methods devised for the solution of the equations, and over to the applications in modern physics and astrophysics. Numerous figures, diagrams, and a variety of exercises aid the material in the book. The most obvious applications of this work range from astrophysics (black holes, neutron stars, gamma-ray bursts, and active galaxies) to cosmology (early-universe hydrodynamics and phase transitions) and particle physics (heavy-ion collisions). It is often said that fluids are either seen as solutions of partial differential equations or as "wet". Fluids in this book are definitely wet, but the mathematical beauty of differential equations is not washed out.
The masses of neutron stars are limited by an instability to gravitational collapse and an instability driven by gravitational waves limits their spin. Their oscillations are relevant to x-ray observations of accreting binaries and to gravitational wave observations of neutron stars formed during the coalescence of double neutron-star systems. This volume includes more than forty years of research to provide graduate students and researchers in astrophysics, gravitational physics and astronomy with the first self-contained treatment of the structure, stability and oscillations of rotating neutron stars. This monograph treats the equations of stellar equilibrium; key approximations, including slow rotation and perturbations of spherical and rotating stars; stability theory and its applications, from convective stability to the r-mode instability; and numerical methods for computing equilibrium configurations and the nonlinear evolution of their oscillations. The presentation of fundamental equations, results and applications is accessible to readers who do not need the detailed derivations.
Neutron stars represent natural laboratories where all kinds of processes and reactions take place in unusual and extremely dense matter. Neutron stars, being the compact objects of close attention for physicists and astronomers, are the sources of strictly periodic pulsed radiation. Every neutron star has its own unique characteristics of pulse frequency, radiation spectrum and intensity, but there are also the glitches and pauses that occur suddenly. All of this together raises many questions. For instance, what is the physics concerning these phenomena in general, and what changes can emerge in the properties of matter under extreme conditions specific to neutron stars? Investigation of some of these issues is one of the aims of this book, which is dedicated to the physics of neutron stars, in particular the influence of external fields and rotation on the properties of neutron stars, and reactions and transition of matter in its envelopes and depth. In this regard, the authors review the models of neutron stars involving not only local charge neutrality cases, but also the most recent models fulfilling global charge neutrality. The weak interactions are taken into account by requiring the β stability of the system. The strong interactions, processes and reactions are described on the basis of the methods of few-body and cluster physics in a wide range of densities. Both electromagnetic and gravitational interactions are accounted for when constructing the equation of the neutron star matter and the equilibrium structure of the system. The Einstein field equations are solved for static and rotating neutron stars equilibrium configurations. Basic parameters of neutron stars such as mass-radius relations, mass-central density relation and so on are calculated by fulfilling stability criteria required for stable neutron star configurations. The relativistic quadrupole moment takes into account the deviations due to rotation and deformation. In this respect, the class of axisymmetric static and stationary quadrupolar metrics, which satisfy Einsteins equations in empty space and in the presence of matter represented by a perfect fluid, is considered. The physical conditions that must be satisfied for a particular spacetime metric to describe the gravitational field of compact stars are formulated. It is also important to develop powerful tools for investigating the processes in nuclear cluster studies in association with stellar environment, including neutron stars. These tools are different variants of microscopic cluster models, which allow one to study and to predict the dynamics of numerous processes and nuclear reactions taking place at various objects in our Universe. The effects of density oscillation in some layers of neutron star envelopes are investigated in the frame of Faddeev equations in the case of neutron resonances that appear in crystalline nuclei structures. The authors formulate new experiments of thermal neutron scattering on piezo crystalline targets to imitate oscillation effects in neutron star envelopes. The main purpose of this book is to investigate processes, phenomena and reactions in neutron star physics with fundamental interactions described in a self-consistent manner to highlight some interesting effects using few-body and other analytical/numerical methods.
This book focuses on the equation of state (EoS) of compact stars, particularly the intriguing possibility of the “quark star model.” The EoS of compact stars is the subject of ongoing debates among astrophysicists and particle physicists, due to the non-perturbative property of strong interaction at low energy scales. The book investigates the tidal deformability and maximum mass of rotating quark stars and triaxially rotating quark stars, and compares them with those of neutron stars to reveal significant differences. Lastly, by combining the latest observations of GW170817, the book suggests potential ways to distinguish between the neutron star and quark star models.
This self-contained textbook brings together many different branches of physics--e.g. nuclear physics, solid state physics, particle physics, hydrodynamics, relativity--to analyze compact objects. The latest astronomical data is assessed. Over 250 exercises.
This exhaustive survey is the result of a four year effort by many leading researchers in the field to produce both a readable introduction and a yardstick for the many upcoming experiments using heavy ion collisions to examine the properties of nuclear matter. The books falls naturally into five large parts, first examining the bulk properties of strongly interacting matter, including its equation of state and phase structure. Part II discusses elementary hadronic excitations of nuclear matter, Part III addresses the concepts and models regarding the space-time dynamics of nuclear collision experiments, Part IV collects the observables from past and current high-energy heavy-ion facilities in the context of the theoretical predictions specific to compressed baryonic matter. Part V finally gives a brief description of the experimental concepts. The book explicitly addresses everyone working or planning to enter the field of high-energy nuclear physics.
The book gives an extended review of theoretical and observational aspects of neutron star physics. With masses comparable to that of the Sun and radii of about ten kilometres, neutron stars are the densest stars in the Universe. This book describes all layers of neutron stars, from the surface to the core, with the emphasis on their structure and equation of state. Theories of dense matter are reviewed, and used to construct neutron star models. Hypothetical strange quark stars and possible exotic phases in neutron star cores are also discussed. Also covered are the effects of strong magnetic fields in neutron star envelopes.
The work developed in this thesis addresses very important and relevant issues of accretion processes around black holes. Beginning by studying the time variation of the evolution of inviscid accretion discs around black holes and their properties, the author investigates the change of the pattern of the flows when the strength of the shear viscosity is varied and cooling is introduced. He succeeds to verify theoretical predictions of the so called Two Component Advective Flow (TCAF) solution of the accretion problem onto black holes through numerical simulations under different input parameters. TCAF solutions are found to be stable. And thus explanations of spectral and timing properties (including Quasi-Period Oscillations, QPOs) of galactic and extra-galactic black holes based on shocked TCAF models appear to have a firm foundation.