Download Free Numerical Simulation Of Non Newtonian Flow Through An Axisymmetric Contraction Book in PDF and EPUB Free Download. You can read online Numerical Simulation Of Non Newtonian Flow Through An Axisymmetric Contraction and write the review.

Numerical Simulation of Non-Newtonian Flow focuses on the numerical simulation of non-Newtonian flow using finite difference and finite element techniques. Topics range from the basic equations governing non-Newtonian fluid mechanics to flow classification and finite element calculation of flow (generalized Newtonian flow and viscoelastic flow). An overview of finite difference and finite element methods is also presented. Comprised of 11 chapters, this volume begins with an introduction to non-Newtonian mechanics, paying particular attention to the rheometrical properties of non-Newtonian fluids as well as non-Newtonian flow in complex geometries. The role of non-Newtonian fluid mechanics is also considered. The discussion then turns to the basic equations governing non-Newtonian fluid mechanics, including Navier Stokes equations and rheological equations of state. The next chapter describes a flow classification in which the various flow problems are grouped under five main headings: flows dominated by shear viscosity, slow flows (slightly elastic liquids), small deformation flows, nearly-viscometric flows, and long-range memory effects in complex flows. The remainder of the book is devoted to numerical analysis of non-Newtonian fluids using finite difference and finite element techniques. This monograph will be of interest to students and practitioners of physics and mathematics.
Modern day high-performance computers are making available to 21st-century scientists solutions to rheological flow problems of ever-increasing complexity. Computational rheology is a fast-moving subject — problems which only 10 years ago were intractable, such as 3D transient flows of polymeric liquids, non-isothermal non-Newtonian flows or flows of highly elastic liquids through complex geometries, are now being tackled owing to the availability of parallel computers, adaptive methods and advances in constitutive modelling.Computational Rheology traces the development of numerical methods for non-Newtonian flows from the late 1960's to the present day. It begins with broad coverage of non-Newtonian fluids, including their mathematical modelling and analysis, before specific computational techniques are discussed. The application of these techniques to some important rheological flow problems of academic and industrial interest is then treated in a detailed and up-to-date exposition. Finally, the reader is kept abreast of topics at the cutting edge of research in computational applied mathematics, such as adaptivity and stochastic partial differential equations.All the topics in this book are dealt with from an elementary level and this makes the text suitable for advanced undergraduate and graduate students, as well as experienced researchers from both the academic and industrial communities.
This IMA Volume in Mathematics and its Applications AMORPHOUS POLYMERS AND NON-NEWTONIAN FLUIDS is in part the proceedings of a workshop which was an integral part of the 1984-85 IMA program on CONTINUUM PHYSICS AND PARTIAL DIFFERENTIAL EQUATIONS We are grateful to the Scientific Committee: Haim Brezis Constantine Dafermos Jerry Ericksen David Kinderlehrer for planning and implementing an exciting and stimulating year-long program. We espe cially thank the Program Organizers, Jerry Ericksen, David Kinderlehrer, Stephen Prager and Matthew Tirrell for organizing a workshop which brought together scientists and mathematicians in a variety of areas for a fruitful exchange of ideas. George R. Sell Hans Weinberger Preface Experiences with amorphous polymers have supplied much of the motivation for developing novel kinds of molecular theory, to try to deal with the more significant features of systems involving very large molecules with many degrees offreedom. Similarly, the observations of many unusual macroscopic phenomena has stimulated efforts to develop linear and nonlinear theories of viscoelasticity to describe them. In either event, we are confronted not with a well-established, specific set of equations, but with a variety of equations, conforming to a loose pattern and suggested by general kinds of reasoning. One challenge is to devise techniques for finding equations capable of delivering definite and reliable predictions. Related to this is the issue of discovering ways to better grasp the nature of solutions ofthose equations showing some promise.
Non-Newtonian flows and their numerical simulations have generated an abundant literature, as well as many publications and references to which can be found in this volume’s articles. This abundance of publications can be explained by the fact that non-Newtonian fluids occur in many real life situations: the food industry, oil & gas industry, chemical, civil and mechanical engineering, the bio-Sciences, to name just a few. Mathematical and numerical analysis of non-Newtonian fluid flow models provide challenging problems to partial differential equations specialists and applied computational mathematicians alike. This volume offers investigations. Results and conclusions that will no doubt be useful to engineers and computational and applied mathematicians who are focused on various aspects of non-Newtonian Fluid Mechanics. New review of well-known computational methods for the simulation viscoelastic and viscoplastic types Discusses new numerical methods that have proven to be more efficient and more accurate than traditional methods Articles that discuss the numerical simulation of particulate flow for viscoelastic fluids
Handbook of Numerical Methods for Hyperbolic Problems explores the changes that have taken place in the past few decades regarding literature in the design, analysis and application of various numerical algorithms for solving hyperbolic equations. This volume provides concise summaries from experts in different types of algorithms, so that readers can find a variety of algorithms under different situations and readily understand their relative advantages and limitations.
Following an invitation from the Czechoslovakian The scientific programme consisted of 14 plenary delegates at the First Conference of European Rheo lectures as weIl as 310 short presentations, which were logists at Graz in 1982 and adecision by the European held in six parallel sessions in seven half-day sittings. members of the International Committee of Rheology The provision of a reading room containing submitted at the 1983 "Conference of Engineering Rheology" in manuscripts of talks presented at the meeting proved London, the Rheology Group of the Czechoslovak to be popular and seems a worthwhile addition to any Chemical Society (Chairman: Doz. lug. l. Sestak meeting, at least those holding parallel sessions. There CSc.) was entrusted with the organization of the Sec was also a display by nine companies of a wide variety ond Conference of European Rheologists. For an of current rheological instruments. outline of the process leading to the decision to hold The programme for accompanying persons befitted such European meetings, see the Introduction to the the historical significance of the region. The evening Proceedings of the First Conference of European programme included an opening ceremony and recep Rheologists; Rheol Acta 21:355-356 (1982). tion on Monday and an informal banquet on Thurs This Conference was held in the Prague Palace of day as weIl as a visit to the opera.
The numerical simulation of fluid mechanics and heat transfer problems is now a standard part of engineering practice. The widespread availability of capable computing hardware has led to an increased demand for computer simulations of products and processes during their engineering design and manufacturing phases. The range of fluid mechanics and heat transfer applications of finite element analysis has become quite remarkable, with complex, realistic simulations being carried out on a routine basis. The award-winning first edition of The Finite Element Method in Heat Transfer and Fluid Dynamics brought this powerful methodology to those interested in applying it to the significant class of problems dealing with heat conduction, incompressible viscous flows, and convection heat transfer. The Second Edition of this bestselling text continues to provide the academic community and industry with up-to-date, authoritative information on the use of the finite element method in the study of fluid mechanics and heat transfer. Extensively revised and thoroughly updated, new and expanded material includes discussions on difficult boundary conditions, contact and bulk nodes, change of phase, weighted-integral statements and weak forms, chemically reactive systems, stabilized methods, free surface problems, and much more. The Finite Element Method in Heat Transfer and Fluid Dynamics offers students a pragmatic treatment that views numerical computation as a means to an end and does not dwell on theory or proof. Mastering its contents brings a firm understanding of the basic methodology, competence in using existing simulation software, and the ability to develop some simpler, special purpose computer codes.