Download Free Numerical Methods And Statistical Techniques Using C Book in PDF and EPUB Free Download. You can read online Numerical Methods And Statistical Techniques Using C and write the review.

This handbook is designed for experimental scientists, particularly those in the life sciences. It is for the non-specialist, and although it assumes only a little knowledge of statistics and mathematics, those with a deeper understanding will also find it useful. The book is directed at the scientist who wishes to solve his numerical and statistical problems on a programmable calculator, mini-computer or interactive terminal. The volume is also useful for the user of full-scale computer systems in that it describes how the large computer solves numerical and statistical problems. The book is divided into three parts. Part I deals with numerical techniques and Part II with statistical techniques. Part III is devoted to the method of least squares which can be regarded as both a statistical and numerical method. The handbook shows clearly how each calculation is performed. Each technique is illustrated by at least one example and there are worked examples and exercises throughout the volume.
Includes exercises at the end of chapters to help develop C programming skills.
Numerical analysis is the study of computation and its accuracy, stability and often its implementation on a computer. This book focuses on the principles of numerical analysis and is intended to equip those readers who use statistics to craft their own software and to understand the advantages and disadvantages of different numerical methods.
This book explains how computer software is designed to perform the tasks required for sophisticated statistical analysis. For statisticians, it examines the nitty-gritty computational problems behind statistical methods. For mathematicians and computer scientists, it looks at the application of mathematical tools to statistical problems. The first half of the book offers a basic background in numerical analysis that emphasizes issues important to statisticians. The next several chapters cover a broad array of statistical tools, such as maximum likelihood and nonlinear regression. The author also treats the application of numerical tools; numerical integration and random number generation are explained in a unified manner reflecting complementary views of Monte Carlo methods. Each chapter contains exercises that range from simple questions to research problems. Most of the examples are accompanied by demonstration and source code available from the author's website. New in this second edition are demonstrations coded in R, as well as new sections on linear programming and the Nelder–Mead search algorithm.
Now the acclaimed Second Edition of Numerical Recipes is available in the C++ object-oriented programming language. Including and updating the full mathematical and explanatory contents of Numerical Recipes in C, this new version incorporates completely new C++ versions of the more than 300 Numerical Recipes routines that are widely recognized as the most accessible and practical basis for scientific computing. The product of a unique collaboration among four leading scientists in academic research and industry, Numerical Recipes is a complete text and reference book on scientific computing. In a self-contained manner it proceeds from mathematical and theoretical considerations to actual practical computer routines. Highlights include linear algebra, interpolation, special functions, random numbers, nonlinear sets of equations, optimization, eigensystems, Fourier methods and wavelets, statistical tests, ODEs and PDEs, integral equations and inverse theory. The authors approach to C++ preserves the efficient execution that C users expect, while simultaneously employing a clear, object-oriented interface to the routines. Tricks and tips for scientific computing in C++ are liberally included. The routines, in ANSI/ISO C++ source code, can thus be used with almost any existing C++ vector/matrix class library, according to user preference. A simple class library for stand-alone use is also included in the book. Both scientific programmers new to C++, and experienced C++ programmers who need access to the Numerical Recipes routines, can benefit from this important new version of an invaluable, classic text.
Numerical Algorithms: Methods for Computer Vision, Machine Learning, and Graphics presents a new approach to numerical analysis for modern computer scientists. Using examples from a broad base of computational tasks, including data processing, computational photography, and animation, the textbook introduces numerical modeling and algorithmic desig
This book provides aspiring quant developers with the numerical techniques and programming skills needed in quantitative finance. No programming background required.
Computer Based Numerical and Statistical Techniques has been written to provide fundamental introduction of numerical analysis for the students who take a course on Engineering Mathematics and for the students of computer science engineering. The book has been divided into 14 chapters covering all important aspects starting from high speed computation to Interpolation and Curve Fitting to Numerical Integration and Differentiation and finally focusing on Test of Significance