Download Free Numerical Conformal Mapping Domain Decomposition And The Mapping Of Quadrilaterals Book in PDF and EPUB Free Download. You can read online Numerical Conformal Mapping Domain Decomposition And The Mapping Of Quadrilaterals and write the review.

This is a unique monograph on numerical conformal mapping that gives a comprehensive account of the theoretical, computational and application aspects of the problems of determining conformal modules of quadrilaterals and of mapping conformally onto a rectangle. It contains a detailed study of the theory and application of a domain decomposition method for computing the modules and associated conformal mappings of elongated quadrilaterals, of the type that occur in engineering applications. The reader will find a highly useful and up-to-date survey of available numerical methods and associated computer software for conformal mapping. The book also highlights the crucial role that function theory plays in the development of numerical conformal mapping methods, and illustrates the theoretical insight that can be gained from the results of numerical experiments. This is a valuable resource for mathematicians, who are interested in numerical conformal mapping and wish to study some of the recent developments in the subject, and for engineers and scientists who use, or would like to use, conformal transformations and wish to find out more about the capabilities of modern numerical conformal mapping.
This is a unique monograph on numerical conformal mapping that gives a comprehensive account of the theoretical, computational and application aspects of the problems of determining conformal modules of quadrilaterals and of mapping conformally onto a rectangle. It contains a detailed study of the theory and application of a domain decomposition method for computing the modules and associated conformal mappings of elongated quadrilaterals, of the type that occur in engineering applications.The reader will find a highly useful and up-to-date survey of available numerical methods and associated computer software for conformal mapping. The book also highlights the crucial role that function theory plays in the development of numerical conformal mapping methods, and illustrates the theoretical insight that can be gained from the results of numerical experiments.This is a valuable resource for mathematicians, who are interested in numerical conformal mapping and wish to study some of the recent developments in the subject, and for engineers and scientists who use, or would like to use, conformal transformations and wish to find out more about the capabilities of modern numerical conformal mapping.
The idea of complex numbers dates back at least 300 years—to Gauss and Euler, among others. Today complex analysis is a central part of modern analytical thinking. It is used in engineering, physics, mathematics, astrophysics, and many other fields. It provides powerful tools for doing mathematical analysis, and often yields pleasing and unanticipated answers. This book makes the subject of complex analysis accessible to a broad audience. The complex numbers are a somewhat mysterious number system that seems to come out of the blue. It is important for students to see that this is really a very concrete set of objects that has very concrete and meaningful applications. Features: This new edition is a substantial rewrite, focusing on the accessibility, applied, and visual aspect of complex analysis This book has an exceptionally large number of examples and a large number of figures. The topic is presented as a natural outgrowth of the calculus. It is not a new language, or a new way of thinking. Incisive applications appear throughout the book. Partial differential equations are used as a unifying theme.
This book proposes and validates a number of methods and shortcuts for frugal engineers, which will allow them to significantly reduce the computational costs for analysis and reanalysis and, as a result, for structural design processes. The need for accuracy and speed in analyzing structural systems with ever-tighter design tolerances and larger numbers of elements has been relentlessly driving forward research into methods that are capable of analyzing structures at a reasonable computational cost. The methods presented are of particular value in situations where the analysis needs to be repeated hundreds or even thousands of times, as is the case with the optimal design of structures using different metaheuristic algorithms. Featuring methods that are not only applicable to skeletal structures, but by extension also to continuum models, this book will appeal to researchers and engineers involved in the computer-aided analysis and design of structures, and to software developers in this field. It also serves as a complement to previous books on the optimal analysis of large-scale structures utilizing concepts of symmetry and regularity. Further, its novel application of graph-theoretical methods is of interest to mathematicians.
Geometric Function Theory is that part of Complex Analysis which covers the theory of conformal and quasiconformal mappings. Beginning with the classical Riemann mapping theorem, there is a lot of existence theorems for canonical conformal mappings. On the other side there is an extensive theory of qualitative properties of conformal and quasiconformal mappings, concerning mainly a prior estimates, so called distortion theorems (including the Bieberbach conjecture with the proof of the Branges). Here a starting point was the classical Scharz lemma, and then Koebe's distortion theorem. There are several connections to mathematical physics, because of the relations to potential theory (in the plane). The Handbook of Geometric Function Theory contains also an article about constructive methods and further a Bibliography including applications eg: to electroxtatic problems, heat conduction, potential flows (in the plane). · A collection of independent survey articles in the field of GeometricFunction Theory · Existence theorems and qualitative properties of conformal and quasiconformal mappings · A bibliography, including many hints to applications in electrostatics, heat conduction, potential flows (in the plane).
The topics discussed at the conference revolved around the interaction of computational methods and theoretical function theory, as well as recent advances and developments in both fields. The talks ranged from analytic function theory to approximation theory to numerical conformal mapping and other computational methods.
This volume contains refereed state-of-the-art research articles and extensive surveys on the various aspects of interaction of complex variables and scientific computation as well as on related areas such as function theory and approximation theory.