Download Free Nucleic Acid Transfection Book in PDF and EPUB Free Download. You can read online Nucleic Acid Transfection and write the review.

Gene Delivery into Mammalian Cells: An Overview on Existing Approaches Employed In Vitro and In Vivo, by Peter Hahn and Elizabeth Scanlan * Strategies for the Preparation of Synthetic Transfection Vectors, by Asier Unciti-Broceta, Matthew N. Bacon, and Mark Bradley * Cationic Lipids: Molecular Structure/Transfection Activity Relationships and Interactions with Biomembranes, by Rumiana Koynova and Boris Tenchov * Hyperbranched Polyamines for Transfection, by Wiebke Fischer, Marcelo Calderon, and Rainer Haag * Carbohydrate Polymers for Nonviral Nucleic Acid Delivery, by Antons Sizovs, Patrick M. McLendon, Sathya Srinivasachari, and Theresa M. Reineke * Cationic Liposome–Nucleic Acid Complexes for Gene Delivery and Silencing: Pathways and Mechanisms for Plasmid DNA and siRNA, by Kai K. Ewert, Alexandra Zidovska, Ayesha Ahmad, Nathan F. Bouxsein, Heather M. Evans, Christopher S. McAllister, Charles E. Samuel, and Cyrus R. Safinya * Chemically Programmed Polymers for Targeted DNA and siRNA Transfection, by Eveline Edith Salcher and Ernst Wagner * Photochemical Internalization: A New Tool for Gene and Oligonucleotide Delivery, by Kristian Berg, Maria Berstad, Lina Prasmickaite, Anette Weyergang, Pål K. Selbo, Ida Hedfors, and Anders Høgset * Visualizing Uptake and Intracellular Trafficking of Gene Carriers by Single-Particle Tracking, by N. Ruthardt and C. Bräuchle
DNA delivery into cells is a rapidly developing area in gene therapy and biotechnology. Moreover, it is a powerful research tool to determine gene structure, regulation, and function. Viral methods of DNA delivery are well-characterized and efficient, but little is known about the toxicity and immunogenecity of viral vectors. As a result, non-viral, transfection methods of DNA delivery are of increasing interest. Synthetic DNA Delivery Systems is a comprehensive and current resource on DNA transfection. The use of histidine-rich peptides and polypeptides as DNA delivery systems and self-assembled delivery systems based on cationic lipids and polymers are discussed. Targeted delivery to organelles, tumor cells and dendritic cells comprise an important topic.
Never before has it been so critical for lab workers to possess the proper tools and methodologies necessary to determine the structure, function, and expression of the corresponding proteins encoded in the genome. Mulhardt's Molecular Biology and Genomics helps aid in this daunting task by providing the reader with tips and tricks for more successful lab experiments. This strategic lab guide explores the current methodological variety of molecular biology and genomics in a simple manner, addressing the assets and drawbacks as well as critical points. It also provides short and precise summaries of routine procedures as well as listings of the advantages and disadvantages of alternative methods. Shows how to avoid experimental dead ends and develops an instinct for the right experiment at the right time Includes a handy Career Guide for researchers in the field Contains more than 100 extensive figures and tables
This book focuses on bioelectrics, a new multidisciplinary field encompassing engineering and biology with applications to the medical, environmental, food, energy, and biotechnological fields. At present, 15 universities and institutes in Japan, the USA and the EU comprise the International Consortium of Bioelectrics, intended to advance this novel and important research field. This book will serve as an introductory resource for young scientists and also as a textbook for use by both undergraduate and graduate students – the world’s first such work solely devoted to bioelectrics.
This first title on the topic provides complete coverage, including the molecular basis, production and possible biomedical applications. Written by the most prominent academic researchers in the field as well as by researchers at one of the world's leading companies in industrial production of minicircle DNA, this practical book is aimed at everyone who is directly or indirectly involved in the development of gene therapies.
Basic Science Methods for Clinical Researchers addresses the specific challenges faced by clinicians without a conventional science background. The aim of the book is to introduce the reader to core experimental methods commonly used to answer questions in basic science research and to outline their relative strengths and limitations in generating conclusive data. This book will be a vital companion for clinicians undertaking laboratory-based science. It will support clinicians in the pursuit of their academic interests and in making an original contribution to their chosen field. In doing so, it will facilitate the development of tomorrow’s clinician scientists and future leaders in discovery science. Serves as a helpful guide for clinical researchers who lack a conventional science background Organized around research themes pertaining to key biological molecules, from genes, to proteins, cells, and model organisms Features protocols, techniques for troubleshooting common problems, and an explanation of the advantages and limitations of a technique in generating conclusive data Appendices provide resources for practical research methodology, including legal frameworks for using stem cells and animals in the laboratory, ethical considerations, and good laboratory practice (GLP)
Spherical nucleic acids (SNAs) comprise a nanoparticle core and a densely packed and highly oriented nucleic acid shell, typically DNA or RNA. They have novel architecture-dependent properties that distinguish them from all other forms of nucleic acids and make them useful in materials synthesis, catalysis, diagnostics, therapeutics, and optics/plasmonics. This book covers over two decades of Dr. Mirkin’s research on SNAs and their anisotropic analogues, including synthesis and fundamental properties, and applications in colloidal crystallization, adaptive matter, and nanomedicine, spanning extra- and intracellular diagnostics, gene regulation, and immunomodulation. It is a reprint volume that compiles 101 key papers from high-impact journals in this research area published by the Mirkin Group at Northwestern University, Illinois, USA, within the International Institute for Nanotechnology, and collaborators. Volume 1 provides an overview and a historical framework of engineering matter from DNA-modified constructs and discusses the enabling features of nucleic acid–functionalized nanomaterials. Volume 2 covers design rules for colloidal crystallization, building blocks for crystal engineering, and DNA and RNA as programmable bonds. Volume 3 discusses colloidal crystallization processes and routes to hierarchical assembly, dynamic nanoparticle superlattices, surface-based and template-confined colloidal crystallization, optics and plasmonics with nanoparticle superlattices, and postsynthetic modification and catalysis with nanoparticle superlattices. Volume 4 covers diagnostic modalities, and intracellular therapeutic and diagnostic schemes based upon nucleic acid–functionalized nanomaterials.
This volume presents detailed laboratory protocols for in vitro synthesis of mRNA with favorable properties, its introduction into cells by a variety of techniques, and the measurement of physiological and clinical consequences such as protein replacement and cancer immunotherapy. Synthetic techniques are described for structural features in mRNA that provide investigational tools such as fluorescence emission, click chemistry, photo-chemical crosslinking, and that produce mRNA with increased stability in the cell, increased translational efficiency, and reduced activation of the innate immune response. Protocols are described for clinical applications such as large-scale transfection of dendritic cells, production of GMP-grade mRNA, redirecting T cell specificity, and use of molecular adjuvants for RNA vaccines. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Synthetic mRNA: Production, Introduction into Cells, and Physiological Consequences is a valuable and cutting-edge resource for both laboratory investigators and clinicians interested in this powerful and rapidly evolving technology.
​The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. The chapter "Polymeric Nanoparticle-Mediated Gene Delivery for Lung Cancer Treatment" is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.