Download Free Nuclear Reactor Technology Assessment For Near Term Deployment Book in PDF and EPUB Free Download. You can read online Nuclear Reactor Technology Assessment For Near Term Deployment and write the review.

Given the increasing interest in the near term deployment of new nuclear power plants, IAEA Member States have requested guidance on the process of evaluating and selecting available technology options. Reactor technology assessment enables the evaluation, selection, and deployment of the best technology to meet the objectives of a nuclear power programme. This publication demonstrates how reactor technology assessment is performed and how the process and results of this work enable decision making in nuclear power planning. The approach also provides decision makers with the documentation necessary to support their conclusions.
This publication explains how a reactor technology assessment is performed and how the process and its results enable decision making for nuclear power planning and implementation at each of its phases. The methodology has been revised to incorporate developments since the first edition in 2013 and includes feedback from comprehensive training workshops offered for the last six years to Member States introducing nuclear power programmes. The aim of this publication is to help newcomer Member States to understand the complexity involved in the selection of the most suitable reactor technology as well as obligations and responsibilities integral to an unbiased assessment. The publication can also be used by countries that already have nuclear power programmes, to assist in their selection of the next nuclear power plant.
Electricity, supplied reliably and affordably, is foundational to the U.S. economy and is utterly indispensable to modern society. However, emissions resulting from many forms of electricity generation create environmental risks that could have significant negative economic, security, and human health consequences. Large-scale installation of cleaner power generation has been generally hampered because greener technologies are more expensive than the technologies that currently produce most of our power. Rather than trade affordability and reliability for low emissions, is there a way to balance all three? The Power of Change: Innovation for Development and Deployment of Increasingly Clean Energy Technologies considers how to speed up innovations that would dramatically improve the performance and lower the cost of currently available technologies while also developing new advanced cleaner energy technologies. According to this report, there is an opportunity for the United States to continue to lead in the pursuit of increasingly clean, more efficient electricity through innovation in advanced technologies. The Power of Change: Innovation for Development and Deployment of Increasingly Clean Energy Technologies makes the case that America's advantagesâ€"world-class universities and national laboratories, a vibrant private sector, and innovative states, cities, and regions that are free to experiment with a variety of public policy approachesâ€"position the United States to create and lead a new clean energy revolution. This study focuses on five paths to accelerate the market adoption of increasing clean energy and efficiency technologies: (1) expanding the portfolio of cleaner energy technology options; (2) leveraging the advantages of energy efficiency; (3) facilitating the development of increasing clean technologies, including renewables, nuclear, and cleaner fossil; (4) improving the existing technologies, systems, and infrastructure; and (5) leveling the playing field for cleaner energy technologies. The Power of Change: Innovation for Development and Deployment of Increasingly Clean Energy Technologies is a call for leadership to transform the United States energy sector in order to both mitigate the risks of greenhouse gas and other pollutants and to spur future economic growth. This study's focus on science, technology, and economic policy makes it a valuable resource to guide support that produces innovation to meet energy challenges now and for the future.
This is the twenty-fourth edition of Reference Data Series No. 2, which presents the most recent reactor data available to the IAEA. It contains summarized information as of the end of 2003 on: (1) power reactors operating or under construction, and shut down; and (2) performance data on reactors operating in the IAEA Member States, as reported to the IAEA. The information is collected by the Agency through designated national correspondents in the Member States. The replies are used to maintain the IAEA's Power Reactor Information System (PRIS).
Recent interest in small modular reactors (SMRs) is being driven by a desire to reduce the total capital costs associated with nuclear power plants and to provide power to small grid systems. According to estimates available today, if all the competitive advantages of SMRs were realised, including serial production, optimised supply chains and smaller financing costs, SMRs could be expected to have lower absolute and specific (per-kWe) construction costs than large reactors. Although the economic parameters of SMRs are not yet fully determined, a potential market exists for this technology, particularly in energy mixes with large shares of renewables. This report assesses the size of the market for SMRs that are currently being developed and that have the potential to broaden the ways of deploying nuclear power in different parts of the world. The study focuses on light water SMRs that are expected to be constructed in the coming decades and that strongly rely on serial, factory-based production of reactor modules. In a high-case scenario, up to 21 GWe of SMRs could be added globally by 2035, representing approximately 3% of total installed nuclear capacity.
Handbook of Small Modular Nuclear Reactors, Second Edition is a fully updated comprehensive reference on Small Modular Reactors (SMRs), which reflects the latest research and technological advances in the field from the last five years. Editors Daniel T. Ingersoll and Mario D. Carelli, along with their team of expert contributors, combine their wealth of collective experience to update this comprehensive handbook that provides the reader with all required knowledge on SMRs, expanding on the rapidly growing interest and development of SMRs around the globe. This book begins with an introduction to SMRs for power generation, an overview of international developments, and an analysis of Integral Pressurized Water Reactors as a popular class of SMRs. The second part of the book is dedicated to SMR technologies, including physics, components, I&C, human-system interfaces and safety aspects. Part three discusses the implementation of SMRs, covering economic factors, construction methods, hybrid energy systems and licensing considerations. The fourth part of the book provides an in-depth analysis of SMR R&D and deployment of SMRs within eight countries, including the United States, Republic of Korea, Russia, China, Argentina, and Japan. This edition includes brand new content on the United Kingdom and Canada, where interests in SMRs have increased considerably since the first edition was published. The final part of the book adds a new analysis of the global SMR market and concludes with a perspective on SMR benefits to developing economies. This authoritative and practical handbook benefits engineers, designers, operators, and regulators working in nuclear energy, as well as academics and graduate students researching nuclear reactor technologies. - Presents the latest research on SMR technologies and global developments - Includes new case study chapters on the United Kingdom and Canada and a chapter on global SMR markets - Discusses new technologies such as floating SMRs and molten salt SMRs
This publication provides guidance on project management from the preparatory phase to plant turnover to commissioning of nuclear power plants. The guidelines and experiences described will enable project managers to obtain better performance in nuclear power plant construction.
Innovation has been a driving force in the successful deployment of nuclear energy and remains essential today for its sustainable future. This report provides an overview of the state of the art in nuclear innovation systems, including their driving forces, main actors, institutional and legal frameworks, and infrastructure for knowledge and programme management. It also offers policy recommendations based on country reports and case studies supplied by participating member countries.
Describes the rationale and vision for the peaceful use of nuclear energy. The publication identifies the basic principles that nuclear energy systems must satisfy to fulfil their promise of meeting growing global energy demands.
This publication summarizes the results of an IAEA coordinated research project on the development of advanced methodologies for the assessment of passive safety system performance in advanced reactors. This includes discussions on various methodologies to assess the performance of passive engineered safety features in innovative small reactors, including the Indian AHWR 300 LEU and the Argentinian CAREM25. The publication focuses on the different reliability assessment approaches, methodologies, analysis and evaluation of the results and technical challenges. It provides the insights resulting from the analysis on the technical issues associated with assessing the reliability of passive systems in the context of nuclear safety and probabilistic safety analysis. A viable path towards the implementation of the research efforts in the related areas is also delineated.