Download Free Nuclear Pore Complexes And Nucleocytoplasmic Transport Methods Book in PDF and EPUB Free Download. You can read online Nuclear Pore Complexes And Nucleocytoplasmic Transport Methods and write the review.

Volume 122 of Methods in Cell Biology describes modern tools and techniques used to study nuclear pore complexes and nucleocytoplasmic transport in diverse eukaryotic model systems (including mammalian cells, Xenopus, C. elegans, yeast). The volume enables investigators to analyze nuclear pore complex structure, assembly, and dynamics; to evaluate protein and RNA trafficking through the nuclear envelope; and to design in vivo or in vitro assays appropriate to their research needs. Beyond the study of nuclear pores and transport as such, these protocols will also be helpful to scientists characterizing gene regulation, signal transduction, cell cycle, viral infections, or aging. The NPC being one of the largest multiprotein complexes in the cell, some protocols will also be of interest for people currently characterizing other macromolecular assemblies. This book is thus designed for laboratory use by graduate students, technicians, and researchers in many molecular and cellular disciplines. Describes modern tools and techniques used to study nuclear pore complexes and nucleocytoplasmic transport in diverse eukaryotic model systems (mammalian cells, Xenopus, C. elegans, yeast) Chapters are written by experts in the field Cutting-edge material
Bidirectional traffic of macromolecules across the nuclear envelope is an active and essential transport process in all eukaryotic cells. Work on various model systems has led to a tremendous increase in our understanding of nuclear transport in recent years. This volume summarizes our current knowledge of protein and RNA transport into and out of the nucleus. It contains nine up-to-date reviews which cover various aspects of nucleocytoplasmic transport, including the structure and function of the nuclear pore complex, the role of soluble transport factors in protein and RNA transport, and the regulation of protein transport through the nuclear pore.
Dysfunction of nuclear-cytoplasmic transport systems has been associated with many human diseases. Thus, understanding of how functional this transport system maintains, or through dysfunction fails to maintain remains the core question in cell biology. In eukaryotic cells, the nuclear envelope (NE) separates the genetic transcription in the nucleus from the translational machinery in the cytoplasm. Thousands of nuclear pore complexes (NPCs) embedded on the NE selectively mediate the bidirectional trafficking of macromolecules such as RNAs and proteins between these two cellular compartments. In this book, the authors integrate recent progress on the structure of NPC and the mechanism of nuclear-cytoplasmic transport system in vitro and in vivo.
Delivery of therapeutic proteomics and genomics represent an important area of drug delivery research. Genomics and proteomics approaches could be used to direct drug development processes by unearthing pathways involved in disease pathogenesis where intervention may be most successful. This book describes the basics of genomics and proteomics and highlights the various chemical, physical and biological approaches to protein and gene delivery. Covers a diverse array of topics from basic sciences to therapeutic applications of proteomics and genomics delivery Of interest to researchers in both academia and industry Highlights what’s currently known and where further research is needed
In eukaryotic cells, the nuclear genome and its transcriptional apparatus is separated from the site of protein synthesis by the nuclear envelope. Thus, a constant flow of proteins and nucleic acids has to cross the nuclear envelope in both directions. This transport in and out of the nucleus is mediated by nuclear pore complexes (NPCs) and occurs in an energy and signal-dependent manner. Thus, nucleocytoplasmic translocation of macro molecules across the nuclear envelope appears to be a highly specific and regulated process. Viruses that replicate their genome in the cell nucleus are therefore forced to develop efficient ways to deal with the intracellulZlr host cell transport machinery. Historically, investigation of Polyomavirus replication allowed identification ofsequences that mediate nuclear import, which led subsequently to our detailed understanding of the cellular factors that are involved in nuclear import. Transport ofmacromolecules in the opposite direction, however, is less well understood. The investigation of retroviral gene expression in recent years pro vided the first insights into the cellular mechanisms that regulate nuclear export. In particular, the detailed dissection of the function of the human immunodeficiency virus type I (HIV-I) Rev trans-activator protein identified CRMI, as a hona fide nuclear export receptor. CRM I appears to be involved in the nucleocytoplasmic translocation of the vast majority of viral and cellular proteins that have subsequently been found to contain a Rev-type leucine-rich nuclear export signal (NES).
Nuclear pore complexes (NPCs) are large macromolecular gateways embedded in the nuclear envelope of Eukaryotic cells that serve to regulate bi-directional trafficking of particles to and from the nucleus. NPCs have been described as creating a selectively permeable barrier mediating the nuclear export of key endogenous cargoes such as mRNA, and pre-ribosomal subunits as well as allow for the nuclear import of nuclear proteins and some viral particles. Remarkably, other particles that are not qualified for nucleocytoplasmic transport are repelled from the NPC, unable to translocate. The NPC is made up of over 30 unique proteins, each present in multiples of eight copies. The two primary protein components of the NPC can be simplified as scaffold nucleoporins which form the main structure of the NPC and the phenylalanine-glycine (FG) motif containing nucleoporins (FG-Nups) which anchor to the scaffold and together create the permeability barrier within the pore. Advances in fluorescence microscopy techniques including single-molecule and super-resolution microscopy have made it possible to label and visualize the dynamic components of the NPC as well as track the rapid nucleocytoplasmic transport process of importing and exporting cargoes. The focus of this dissertation will be on live cell fluorescence microscopy application in probing the dynamic components of the NPC as well as tracking the processes of nucleocytoplasmic transport.
Pharmacoepigenetics, Volume Eleven provides a comprehensive volume on the role of epigenetics and epigenomics in drug discovery and development, providing a detailed, but accessible, view of the field, from basic principles, to applications in disease therapeutics. Leading international researchers from across academia, clinical settings and the pharmaceutical industry discuss the influence of epigenetics and epigenomics in human pathology, epigenetic biomarkers for disease prediction, diagnosis, and treatment, current epigenetic drugs, and the application of epigenetic procedures in drug development. Throughout the book, chapter authors offer a balanced and objective discussion of the future of pharmacoepigenetics and its crucial contribution to the growth of precision and personalized medicine. Fully examines the influence of epigenetics and epigenomics in human pathology, epigenetic biomarkers for disease prediction, diagnosis, treatment, current epigenetic drugs and the application of epigenetic procedures in drug development Features chapter contributions from leading international researchers in academia, clinical settings and the pharmaceutical industry Instructs researchers, students and clinicians on how to better interpret and employ pharmacoepigenetics in drug development, efficiency and safety Provides a balanced and objective discussion of the future of pharmacoepigenetics and its crucial role in precision medicine
Bridging the gap between basic scientific advances and the understanding of liver disease — the extensively revised new edition of the premier text in the field. The latest edition of The Liver: Biology and Pathobiology remains a definitive volume in the field of hepatology, relating advances in biomedical sciences and engineering to understanding of liver structure, function, and disease pathology and treatment. Contributions from leading researchers examine the cell biology of the liver, the pathobiology of liver disease, the liver’s growth, regeneration, metabolic functions, and more. Now in its sixth edition, this classic text has been exhaustively revised to reflect new discoveries in biology and their influence on diagnosing, managing, and preventing liver disease. Seventy new chapters — including substantial original sections on liver cancer and groundbreaking advances that will have significant impact on hepatology — provide comprehensive, fully up-to-date coverage of both the current state and future direction of hepatology. Topics include liver RNA structure and function, gene editing, single-cell and single-molecule genomic analyses, the molecular biology of hepatitis, drug interactions and engineered drug design, and liver disease mechanisms and therapies. Edited by globally-recognized experts in the field, this authoritative volume: Relates molecular physiology to understanding disease pathology and treatment Links the science and pathology of the liver to practical clinical applications Features 16 new “Horizons” chapters that explore new and emerging science and technology Includes plentiful full-color illustrations and figures The Liver: Biology and Pathobiology, Sixth Edition is an indispensable resource for practicing and trainee hepatologists, gastroenterologists, hepatobiliary and liver transplant surgeons, and researchers and scientists in areas including hepatology, cell and molecular biology, virology, and drug metabolism.