Download Free Nuclear Magnetic Resonance Nmr Book in PDF and EPUB Free Download. You can read online Nuclear Magnetic Resonance Nmr and write the review.

Combines clear and concise discussions of key NMR concepts with succinct and illustrative examples Designed to cover a full course in Nuclear Magnetic Resonance (NMR) Spectroscopy, this text offers complete coverage of classic (one-dimensional) NMR as well as up-to-date coverage of two-dimensional NMR and other modern methods. It contains practical advice, theory, illustrated applications, and classroom-tested problems; looks at such important ideas as relaxation, NOEs, phase cycling, and processing parameters; and provides brief, yet fully comprehensible, examples. It also uniquely lists all of the general parameters for many experiments including mixing times, number of scans, relaxation times, and more. Nuclear Magnetic Resonance Spectroscopy: An Introduction to Principles, Applications, and Experimental Methods, 2nd Edition begins by introducing readers to NMR spectroscopy - an analytical technique used in modern chemistry, biochemistry, and biology that allows identification and characterization of organic, and some inorganic, compounds. It offers chapters covering: Experimental Methods; The Chemical Shift; The Coupling Constant; Further Topics in One-Dimensional NMR Spectroscopy; Two-Dimensional NMR Spectroscopy; Advanced Experimental Methods; and Structural Elucidation. Features classical analysis of chemical shifts and coupling constants for both protons and other nuclei, as well as modern multi‐pulse and multi-dimensional methods Contains experimental procedures and practical advice relative to the execution of NMR experiments Includes a chapter-long, worked-out problem that illustrates the application of nearly all current methods Offers appendices containing the theoretical basis of NMR, including the most modern approach that uses product operators and coherence-level diagrams By offering a balance between volumes aimed at NMR specialists and the structure-determination-only books that focus on synthetic organic chemists, Nuclear Magnetic Resonance Spectroscopy: An Introduction to Principles, Applications, and Experimental Methods, 2nd Edition is an excellent text for students and post-graduate students working in analytical and bio-sciences, as well as scientists who use NMR spectroscopy as a primary tool in their work.
Nuclear Magnetic Resonance offers an accessible introduction to the physical principles of liquid-state NMR, with examples, applications, and exercises provided throughout to enable beginning undergraduates to get to grips with this important analytical technique.
Nine chapters cover: fundamental principles; experimental methods; the chemical shift; coupling of nuclear spins; nuclear relaxation and chemical rate processes; two-dimensional nuclear magnetic resonance spectroscopy; macromolecules; NMR of solids; special topics. Annotation copyrighted by Book News, Inc., Portland, OR
Although nuclear magnetic resonance is perhaps best known for its spectacular utility in medical tomography, its potential applicability to fields such as biology, materials science, and chemical physics is being increasingly recognized as laboratory NMR spectrometers are adapted to enable small scale imaging. This excellent introduction to the subject explores principles and common themes underlying two key variants of NMR microscopy, and provides many examples of their use. Methods discussed are not only important to fundamental biological and physical research, but have applications to a wide variety of industries, including those concerned with petrochemicals, polymers, biotechnology, food processing, and natural product processing. The wide range of scientists interested in NMR microscopy will want to own a copy of this book.
Nuclear Magnetic Resonance in Biochemistry: Principles and Applications focuses on the principles and applications of nuclear magnetic resonance (NMR) in biochemistry. Topics covered include experimental methods in NMR; the mechanisms of NMR relaxation; chemical and paramagnetic shifts; spin-spin splitting; the use of NMR in investigations of biopolymers and biomolecular interactions; and molecular dynamics in biological and biochemical systems. This text is comprised of eight chapters; the first of which gives an overview of NMR spectroscopy and its use in studies of biological systems. The next two chapters discuss the theoretical basis for NMR applications in biochemistry, with emphasis on Bloch equations, quantum mechanics, correlation function and correlation time, double resonance, and chemical exchange. The reader is then introduced to the basis for chemical shifts and spin-spin splitting, along with several examples of the use of these NMR parameters in studies of small molecule interactions and structure. The experimental apparatus and procedures employed in NMR studies, Fourier transform NMR, and NMR spectral parameters of small molecules interacting with macromolecules are also considered. The book highlights the information obtainable from the spectra of biopolymers, and then concludes with a chapter on NMR investigations of the state of motion of lipids in membranes and model membranes; water in macromolecular and cellular systems; and sodium ion in biological tissue. This book is intended primarily for chemists, biochemists, biophysicists, and molecular biologists, as well as graduate students.
The revolutionary impetus of the NMR methods in organic chemistry has parallels in the field of boron chemistry. lIB NMR spectroscopy provided a basis for the elucida tion of structures and reactions of the boron hydrides. However, although many studies have been carried out with the higher boranes, carboranes, metalloboranes, etc. , and although certain patterns have emerged, the correlation between the observed chemical shift and the assigned structural unit is still not fully understood. Therefore, predictions in this area are still rather limited, and semiquantitative interpretations are not yet pos sible. Several years ago Eaton and Lipscomb sUpImarized the status in this field in their book "NMR Studies of Boron Hydrides and Related Compounds" and a plethora of new data has accumulated since then. The book also contained material on simple bo rane derivatives, but they were not discussed in any detail. On the other hand many systematic studies, both synthetic and spectroscopic, have been conducted on these simple boron materials in the last decade. Thus a large amount of NMR information is available, not only on lIB but also on 1 H, 1 3 C, and 14 N. However, this information is widely scattered in the literature, and often the data are not discussed at all. It see med appropriate, therefore, to collect these data and to present them in one volume.
Nuclear magnetic resonance spectroscopy is presently going through an explosive phase of development. This has been brought about largely on account of the advent of Fourier transform NMR spectrometers linked to powerful microcomputers which have opened up a whole new world for structural chemists and biochemists. This is exemplified by a host of publications, especially on new pulse sequences, which continue to provide new exciting modifications for recording two-dimensional NMR. Moreover, NMR is no longer confined to structural chemists but has moved firmly into the area of medicine as a powerful nondestructive body scanning technique. With this background, I felt that there was need for a text which would provide a fairly comprehensive account of the important features of 1 H- and 13C-NMR spectroscopy in one book, as well as make available an up-to-date account of recent developments of new pulse sequences, with particular reference to 2D-NMR spectroscopy. Since this book is written for students of chemistry and biochemistry as well as for biology students who have chemistry as a subsidiary, it was decided to avoid a complex mathematical treatment and to present, as far as possible without oversimplification, a qualitative account of 1 H- and 13C-NMR spectroscopy as it is today. I hope that the book satisfactorily meets these objectives.
Spin Dynamics: Basics of Nuclear Magnetic Resonance, Second Edition is a comprehensive and modern introduction which focuses on those essential principles and concepts needed for a thorough understanding of the subject, rather than the practical aspects. The quantum theory of nuclear magnets is presented within a strong physical framework, supported by figures. The book assumes only a basic knowledge of complex numbers and matrices, and provides the reader with numerous worked examples and exercises to encourage understanding. With the explicit aim of carefully developing the subject from the beginning, the text starts with coverage of quarks and nucleons and progresses through to a detailed explanation of several important NMR experiments, including NMR imaging, COSY, NOESY and TROSY. Completely revised and updated, the Second Edition features new material on the properties and distributions of isotopes, chemical shift anisotropy and quadrupolar interactions, Pake patterns, spin echoes, slice selection in NMR imaging, and a complete new chapter on the NMR spectroscopy of quadrupolar nuclei. New appendices have been included on Euler angles, and coherence selection by field gradients. As in the first edition, all material is heavily supported by graphics, much of which is new to this edition. Written for undergraduates and postgraduate students taking a first course in NMR spectroscopy and for those needing an up-to-date account of the subject, this multi-disciplinary book will appeal to chemical, physical, material, life, medical, earth and environmental scientists. The detailed physical insights will also make the book of interest for experienced spectroscopists and NMR researchers. • An accessible and carefully written introduction, designed to help students to fully understand this complex and dynamic subject • Takes a multi-disciplinary approach, focusing on basic principles and concepts rather than the more practical aspects • Presents a strong pedagogical approach throughout, with emphasis placed on individual spins to aid understanding • Includes numerous worked examples, problems, further reading and additional notes Praise from the reviews of the First Edition: "This is an excellent book... that many teachers of NMR spectroscopy will cherish... It deserves to be a ‘classic’ among NMR spectroscopy texts." NMR IN BIOMEDICINE "I strongly recommend this book to everyone...it is probably the best modern comprehensive description of the subject." ANGEWANDTE CHEMIE, INTERNATIONAL EDITION
SPECTROSCOPY FOR MATERIALS CHARACTERIZATION Learn foundational and advanced spectroscopy techniques from leading researchers in physics, chemistry, surface science, and nanoscience In Spectroscopy for Materials Characterization, accomplished researcher Simonpietro Agnello delivers a practical and accessible compilation of various spectroscopy techniques taught and used to today. The book offers a wide-ranging approach taught by leading researchers working in physics, chemistry, surface science, and nanoscience. It is ideal for both new students and advanced researchers studying and working with spectroscopy. Topics such as confocal and two photon spectroscopy, as well as infrared absorption and Raman and micro-Raman spectroscopy, are discussed, as are thermally stimulated luminescence and spectroscopic studies of radiation effects on optical materials. Each chapter includes a basic introduction to the theory necessary to understand a specific technique, details about the characteristic instrumental features and apparatuses used, including tips for the appropriate arrangement of a typical experiment, and a reproducible case study that shows the discussed techniques used in a real laboratory. Readers will benefit from the inclusion of: Complete and practical case studies at the conclusion of each chapter to highlight the concepts and techniques discussed in the material Citations of additional resources ideal for further study A thorough introduction to the basic aspects of radiation matter interaction in the visible-ultraviolet range and the fundamentals of absorption and emission A rigorous exploration of time resolved spectroscopy at the nanosecond and femtosecond intervals Perfect for Master and Ph.D. students and researchers in physics, chemistry, engineering, and biology, Spectroscopy for Materials Characterization will also earn a place in the libraries of materials science researchers and students seeking a one-stop reference to basic and advanced spectroscopy techniques.
Presents the basic principles of nuclear magnetic resonance for students and professionals with a knowledge of the natural and technical sciences at the lower-division level, and of calculus, matrix algebra, vectors, and complex numbers. Summarizes the quantum mechanics necessary. The topics include the magnetic properties of the nucleus, the motion of magnetization, the major methods and types of NMR, and relaxation. Annotation copyright by Book News, Inc., Portland, OR