Download Free Nuclear Import And Export Book in PDF and EPUB Free Download. You can read online Nuclear Import And Export and write the review.

Nuclear Import and Export in Plants and Animals provides insight into the remarkable mechanisms of nuclear import and export. This book covers a range of topics from the nuclear pore structure, to nuclear import and export of macromolecules in plant and animal cells. In addition, the book covers the special cases of nuclear import of Agrobacterium T-DNA during plant genetic transformation, nuclear import and export of animal viruses, and nuclear intake of foreign DNA. A chapter on research methods to study nuclear transport concludes the book.
In eukaryotic cells, the nuclear genome and its transcriptional apparatus is separated from the site of protein synthesis by the nuclear envelope. Thus, a constant flow of proteins and nucleic acids has to cross the nuclear envelope in both directions. This transport in and out of the nucleus is mediated by nuclear pore complexes (NPCs) and occurs in an energy and signal-dependent manner. Thus, nucleocytoplasmic translocation of macro molecules across the nuclear envelope appears to be a highly specific and regulated process. Viruses that replicate their genome in the cell nucleus are therefore forced to develop efficient ways to deal with the intracellulZlr host cell transport machinery. Historically, investigation of Polyomavirus replication allowed identification ofsequences that mediate nuclear import, which led subsequently to our detailed understanding of the cellular factors that are involved in nuclear import. Transport ofmacromolecules in the opposite direction, however, is less well understood. The investigation of retroviral gene expression in recent years pro vided the first insights into the cellular mechanisms that regulate nuclear export. In particular, the detailed dissection of the function of the human immunodeficiency virus type I (HIV-I) Rev trans-activator protein identified CRMI, as a hona fide nuclear export receptor. CRM I appears to be involved in the nucleocytoplasmic translocation of the vast majority of viral and cellular proteins that have subsequently been found to contain a Rev-type leucine-rich nuclear export signal (NES).
Volume 122 of Methods in Cell Biology describes modern tools and techniques used to study nuclear pore complexes and nucleocytoplasmic transport in diverse eukaryotic model systems (including mammalian cells, Xenopus, C. elegans, yeast). The volume enables investigators to analyze nuclear pore complex structure, assembly, and dynamics; to evaluate protein and RNA trafficking through the nuclear envelope; and to design in vivo or in vitro assays appropriate to their research needs. Beyond the study of nuclear pores and transport as such, these protocols will also be helpful to scientists characterizing gene regulation, signal transduction, cell cycle, viral infections, or aging. The NPC being one of the largest multiprotein complexes in the cell, some protocols will also be of interest for people currently characterizing other macromolecular assemblies. This book is thus designed for laboratory use by graduate students, technicians, and researchers in many molecular and cellular disciplines. - Describes modern tools and techniques used to study nuclear pore complexes and nucleocytoplasmic transport in diverse eukaryotic model systems (mammalian cells, Xenopus, C. elegans, yeast) - Chapters are written by experts in the field - Cutting-edge material
Bidirectional traffic of macromolecules across the nuclear envelope is an active and essential transport process in all eukaryotic cells. Work on various model systems has led to a tremendous increase in our understanding of nuclear transport in recent years. This volume summarizes our current knowledge of protein and RNA transport into and out of the nucleus. It contains nine up-to-date reviews which cover various aspects of nucleocytoplasmic transport, including the structure and function of the nuclear pore complex, the role of soluble transport factors in protein and RNA transport, and the regulation of protein transport through the nuclear pore.
The study of RNA-protein interactions is crucial to understanding the mechanisms and control of gene expression and protein synthesis. The realization that RNAs are often far more biologically active than was previously appreciated has stimulated a great deal of new research in this field. Uniquely, in this book, the world's leading researchers have collaborated to produce a comprehensive and current review of RNA-protein interactions for all scientists working in this area. Timely, comprehensive, and authoritative, this new Frontiers title will be invaluable for all researchers in molecular biology, biochemistry and structural biology.
Dysfunction of nuclear-cytoplasmic transport systems has been associated with many human diseases. Thus, understanding of how functional this transport system maintains, or through dysfunction fails to maintain remains the core question in cell biology. In eukaryotic cells, the nuclear envelope (NE) separates the genetic transcription in the nucleus from the translational machinery in the cytoplasm. Thousands of nuclear pore complexes (NPCs) embedded on the NE selectively mediate the bidirectional trafficking of macromolecules such as RNAs and proteins between these two cellular compartments. In this book, the authors integrate recent progress on the structure of NPC and the mechanism of nuclear-cytoplasmic transport system in vitro and in vivo.
Case Studies in Cell Biology presents real world scenarios to help readers use science process and reasoning skills. The case studies require application and analyzation of concepts beyond rote memory of biological concepts. The book is based on the student learning outcomes from the American Society for Cell Biology, offering practical application for both the classroom and research laboratory. - Guides the reader in applying knowledge directly to real world scenarios - Includes case studies to bridge foundational cell biological concepts to translational science - Aids students in synthesizing information and applying science processes
Stem Cell Biology and Tissue Engineering in Dental Sciences bridges the gap left by many tissue engineering and stem cell biology titles to highlight the significance of translational research in this field in the medical sciences. It compiles basic developmental biology with keen focus on cell and matrix biology, stem cells with relevance to tissue engineering biomaterials including nanotechnology and current applications in various disciplines of dental sciences; viz., periodontology, endodontics, oral & craniofacial surgery, dental implantology, orthodontics & dentofacial orthopedics, organ engineering and transplant medicine. In addition, it covers research ethics, laws and industrial pitfalls that are of particular importance for the future production of tissue constructs. Tissue Engineering is an interdisciplinary field of biomedical research, which combines life, engineering and materials sciences, to progress the maintenance, repair and replacement of diseased and damaged tissues. This ever-emerging area of research applies an understanding of normal tissue physiology to develop novel biomaterial, acellular and cell-based technologies for clinical and non-clinical applications. As evident in numerous medical disciplines, tissue engineering strategies are now being increasingly developed and evaluated as potential routine therapies for oral and craniofacial tissue repair and regeneration. - Diligently covers all the aspects related to stem cell biology and tissue engineering in dental sciences: basic science, research, clinical application and commercialization - Provides detailed descriptions of new, modern technologies, fabrication techniques employed in the fields of stem cells, biomaterials and tissue engineering research including details of latest advances in nanotechnology - Includes a description of stem cell biology with details focused on oral and craniofacial stem cells and their potential research application throughout medicine - Print book is available and black and white, and the ebook is in full color
The seminal text Plant Virology is now in its fifth edition. It has been 10 years since the publication of the fourth edition, during which there has been an explosion of conceptual and factual advances. The fifth edition of Plant Virology updates and revises many details of the previous edition while retaining the important earlier results that constitute the field's conceptual foundation. Revamped art, along with fully updated references and increased focus on molecular biology, transgenic resistance, aphid transmission, and new, cutting-edge topics, bring the volume up to date and maintain its value as an essential reference for researchers and students in the field. - Thumbnail sketches of each genera and family groups - Genome maps of all genera for which they are known - Genetic engineered resistance strategies for virus disease control - Latest understanding of virus interactions with plants, including gene silencing - Interactions between viruses and insect, fungal, and nematode vectors - Contains over 300 full-color illustrations