Download Free Novel Strategies To Repair The Infarcted Heart Book in PDF and EPUB Free Download. You can read online Novel Strategies To Repair The Infarcted Heart and write the review.

Myocardial protection is regarded as one of the most important, yet also most controversial aspects of cardiac surgery. There has been considerable improvement in myocardial protection strategies over recent years, utilising a variety of new approaches to treat cardiac diseases, and this text is intended to embrace the state of the art in this field. The book summarises the state of knowledge on all aspects of myocardial protection, including the latest in the treatment of cardiac diseases, robotics, pediatric surgery and the treatment of cardiac failure. Robotic surgery, valvular surgery, pediatric surgery and coronary surgery are all covered by renowned experts, producing a comprehensive, forward-looking view of the field of myocardial protection. This book should function to update physicians and surgeons interested in the field of cardiac surgery on the current state of knowledge on myocardial protection.
Myocardial tissue engineering (MTE), a concept that intends to prolong patients’ life after cardiac damage by supporting or restoring heart function, is continuously improving. Common MTE strategies include an engineered ‘vehicle’, which may be a porous scaffold or a dense substrate or patch, made of either natural or synthetic polymeric materials. The function of the substrate is to aid transportation of cells into the diseased region of the heart and support their integration. This book, which contains chapters written by leading experts in MTE, gives a complete analysis of the area and presents the latest advances in the field. The chapters cover all relevant aspects of MTE strategies, including cell sources, specific TE techniques and biomaterials used. Many different cell types have been suggested for cell therapy in the framework of MTE, including autologous bone marrow-derived or cardiac progenitors, as well as embryonic or induced pluripotent stem cells, each having their particular advantages and disadvantages. The book covers a complete range of biomaterials, examining different aspects of their application in MTE, such as biocompatibility with cardiac cells, mechanical capability and compatibility with the mechanical properties of the native myocardium as well as degradation behaviour in vivo and in vitro. Although a great deal of research is being carried out in the field, this book also addresses many questions that still remain unanswered and highlights those areas in which further research efforts are required. The book will also give an insight into clinical trials and possible novel cell sources for cell therapy in MTE.
The term “Translational Research” reflects today’s integration of basic research (“bench”) findings with the clinical practice of medicine, and in a wider scope the application of results from the individual patient (“bedside”) to entire populations for the improvement of public health. This book offers future researchers a stimulus in many aspects of cardiovascular research, so as to promote their interest in future fields of cardiovascular disease, diagnosis and treatment. Introduction to Translational Cardiovascular Research discusses the fundamental and important aspects of the topic. It describes the renin-angiotensin-aldosterone system, the beta adrenergic receptors and the hypothalamic-pituitary-adrenal axis, while covering genetic polymorphisms both generally and specifically as regards the vascular endothelium and the use of microRNAs. As such, this book will be relevant to young physicians, nurses and other scientists engaged in the clinical cardiovascular field who want to added research-oriented dimension to their efforts towards better understanding and practicing of medicine. It also aims to attract young basic researchers who want to develop a better comprehension of the organism as a whole, man or animal, that they are investigating.
This Volume of the series Cardiac and Vascular Biology offers a comprehensive and exciting, state-of-the-art work on the current options and potentials of cardiac regeneration and repair. Several techniques and approaches have been developed for heart failure repair: direct injection of cells, programming of scar tissue into functional myocardium, and tissue-engineered heart muscle support. The book introduces the rationale for these different approaches in cell-based heart regeneration and discusses the most important considerations for clinical translation. Expert authors discuss when, why, and how heart muscle can be salvaged. The book represents a valuable resource for stem cell researchers, cardiologists, bioengineers, and biomedical scientists studying cardiac function and regeneration.
This title presents the major advances of the last decade in the field of cardiac regeneration.
This book is a treatise on cardiomyocytes, the most important cell for the contractile function of the heart. There has been significant progress in our understanding of the function-related structure, developmental processes and their determinants, mechanisms of cell cycle regulation, post-natal growth, energy metabolism, and reversible and irreversible response of cardiomyocytes to diverse forms of physiological stress and injury. There is also more clarity on the alterations in the biological mechanisms in cardiomyocytes that lead to pathological states and the changes in the cells that occur secondary to disease conditions. Thanks to these advances in knowledge, there have been great gains in attempts to identify disease biomarkers and therapeutic targets for better management of patients with heart diseases. Possibilities to induce regeneration or proliferation of cardiomyocytes and thus repair and or regenerate the damaged heart are also on the horizon.
This book is a comprehensive and up-to-date resource on the use of regenerative medicine for the treatment of cardiovascular disease. It provides a much-needed review of the rapid development and evolution of bio-fabrication techniques to engineer cardiovascular tissues as well as their use in clinical settings. The book incorporates recent advances in the biology, biomaterial design, and manufacturing of bioengineered cardiovascular tissue with their clinical applications to bridge the basic sciences to current and future cardiovascular treatment. The book begins with an examination of state-of-the-art cellular, biomaterial, and macromolecular technologies for the repair and regeneration of diseased heart tissue. It discusses advances in nanotechnology and bioengineering of cardiac microtissues using acoustic assembly. Subsequent chapters explore the clinical applications and translational potential of current technologies such as cardiac patch-based treatments, cell-based regenerative therapies, and injectable hydrogels. The book examines how these methodologies are used to treat a variety of cardiovascular diseases including myocardial infarction, congenital heart disease, and ischemic heart injuries. Finally, the volume concludes with a summary of the most prominent challenges and perspectives on the field of cardiovascular tissue engineering and clinical cardiovascular regenerative medicine. Cardiovascular Regenerative Medicine is an essential resource for physicians, residents, fellows, and medical students in cardiology and cardiovascular regeneration as well as clinical and basic researchers in bioengineering, nanomaterial and technology, and cardiovascular biology.
The field of regenerative medicine has developed rapidly over the past 20 years with the advent of molecular and cellular techniques. This textbook, Regenerative Medicine: From Protocol to Patient, aims to explain the scientific knowledge and emerging technology as well as the clinical application in different organ systems and diseases. International leading experts from four continents describe the latest scientific and clinical knowledge of the field of regenerative medicine. The process of translating science of laboratory protocols into therapies is explained in sections on regulatory, ethical and industrial issues. This textbook is organized into five parts: (I) Biology of Tissue Regeneration, (II) Stem Cell Science and Technology, (III) Tissue Engineering, Biomaterials and Nanotechnology, (IV) Regenerative Therapies and (V) Regulation and Ethics. The textbook aims to give the student, the researcher, the health care professional, the physician and the patient a complete survey on the current scientific basis, therapeutical protocols, clinical translation and practiced therapies in regenerative medicine.
During the last two decades, stem cells have progressed from merely a concept to a vibrant field of regenerative medicine which is aimed at addressing the root cause of the problem rather than conventional methods of intervention that mostly provide symptomatic relief.Stem cell therapy either alone or in combination with the other established treatment strategies is a hope for patients who suffer from the 'incurable' diseases such as Alzheimer, diabetes, myocardial infarction etc. Besides aspirations in the clinical perspective, stem cells provide excellent in vitro disease models for drug development.Given the significance of the field, the proposed book will be a compilation of the bench experience of experts from various research labs involved in the cutting edge area of stem cell research.