Download Free Novel In Situ Gel Drug Delivery System For Breast Cancer Treatment Book in PDF and EPUB Free Download. You can read online Novel In Situ Gel Drug Delivery System For Breast Cancer Treatment and write the review.

Covers the most common cancers and strategies for nursing care.
Novel Drug Delivery Systems for Phytoconstituents discusses general principles of drug targeting, construction material and technological concerns of different phytoconstituent in delivery systems. It focuses on the development of novel herbal formulations and summarizes their method of preparation, type of active ingredients, route of administration, biological activity and their applications. It dicusses therapeutic activities of plant derived chemicals, their limitations in clinical applications and novel drug delivery solutions to overcome them to provide better therapeutic effects with controlled and targeted drug delivery. Focus on drug delivery of phytomolecules Act as bridge between natural product scientist and clinical doctors Discusses mechanism of poor bioavailability of herbal molecules Increases awareness towards phytochemical efficacy Summarizes efficient novel delivery systems-based formulations. It extensively covers the applications of novel drug delivery systems including polymeric nanoparticles, solid lipid nanoparticles, nanostructured lipid capsules, liposomes, phytosomes, microsphere, transferosomes, and ethosomes. Some chapters are especially focused on anticancer phytodrugs, silymarin, andrographolide, berberine, and curcumin delivery with special emphasis on their application.
The field of encapsulation, especially microencapsulation, is a rapidly growing area of research and product development. Applications of Encapsulation and Controlled Release offers a broad perspective on a variety of applications and processes, including, up-to-date research, figures, tables, illustrations, and references. Written at a level comprehensible to non-experts, it is a rich source of technical information and current practices in research and industry.
The increased understanding of molecular aspects associated with chronic diseases, such as cancer and the role of tumor microenvironment, has led to the identification of endogenous and exogenous stimuli that can be exploited to devise “stimuli-responsive” materials for site-specific drug delivery applications. This book provides a comprehensive account on the design, materials chemistry, and application aspects behind these novel stimuli-responsive materials. Setting the scene, the editors open with a chapter addressing the need for smart materials in delivery applications for therapy, imaging and disease diagnosis. The following chapter describes the key physical and chemical aspects of smart materials, from lipids to polymers to hybrid materials, providing the reader with a springboard to delve into the more application oriented chapters that follow. With in-depth coverage of key drug delivery systems such as pH-responsive, temperature responsive, enzyme-responsive and light responsive systems, this book provides a rigorous foundation to the field. A perfect resource for graduate students and newcomers, the closing chapter on regulatory and commercialization challenges also makes the book ideal for those wanting to take the next step towards clinical translation.
Bioinspired and Biomimetic Materials for Drug Delivery delves into the potential of bioinspired materials in drug delivery, detailing each material type and its latest developments. In the last decade, biomimetic and bioinspired materials and technology has garnered increased attention in drug delivery research. Various material types including polymer, small molecular, protein, peptide, cholesterol, polysaccharide, nano-crystal and hybrid materials are widely considered in drug delivery research. However, biomimetic and bioinspired materials and technology have shown promising results for use in therapeutics, due to their high biocompatibility and reduced immunogenicity. Such materials include dopamine, extracellular exosome, bile acids, ionic liquids, and red blood cell. This book covers each of these materials in detail, reviewing their potential and usage in drug delivery. As such, this book will be a great source of information for biomaterials scientists, biomedical engineers and those working in pharmaceutical research. - Explores latest developments for a broad range of bioinspired and biomimetic materials for drug delivery applications - Helps researchers overcome the challenges of biocompatibility and immunogenicity in drug development - Provides both theoretical and practical knowledge in regards to materials characterization and use in a range of drugs
This book is part of a series dedicated to recent advances on preventive, predictive and personalised medicine (PPPM). It focuses on the theme of “Drug delivery systems: advanced technologies potentially applicable in personalised treatments”. The critical topics involving the development and preparation of effective drug delivery systems, such as: polymers available, self-assembly, nanotechnology, pharmaceutical formulations, three dimensional structures, molecular modeling, tailor-made solutions and technological tendencies, are carefully discussed. The understanding of these areas constitutes a paramount route to establish personalised and effective solutions for specific diseases and individuals.
A symposium titled "Polyphosphazenes in Biomedicine, Engineering & Pioneering Synthesis" was held at a recent meeting of the American Chemical Society (ACS) in August 2017 in Washington, DC. The chapters in this book provide a summary of the international contributions reported at that meeting, the purpose of which was to bring together a broad range of topics, research investigators, and representatives from industry to discuss the current status of different aspects of this field.
Biodegradable thermogels are a promising class of stimuli-responsive polymers. This book summarizes recent developments in thermogel research with a focus on synthesis and self-assembly mechanisms, gel biodegradability, and applications for drug delivery, cell encapsulation and tissue engineering. A closing chapter on commercialisation shows the challenges faced bringing this new material to market. Edited by leading authorities on the subject, this book offers a comprehensive overview for academics and professionals across polymer science, materials science and biomedical and chemical engineering.
A comprehensive guide to the current research, major challenges, and future prospects of controlled drug delivery systems Controlled drug delivery has the potential to significantly improve therapeutic outcomes, increase clinical benefits, and enhance the safety of drugs in a wide range of diseases and health conditions. Fundamentals of Drug Delivery provides comprehensive and up-to-date coverage of the essential principles and processes of modern controlled drug delivery systems. Featuring contributions by respected researchers, clinicians, and pharmaceutical industry professionals, this edited volume reviews the latest research in the field and addresses the many issues central to the development of effective, controlled drug delivery. Divided in three parts, the book begins by introducing the concept of drug delivery and discussing both challenges and opportunities within the rapidly evolving field. The second section presents an in-depth critique of the common administration routes for controlled drug delivery, including delivery through skin, the lungs, and via ocular, nasal, and otic routes. The concluding section summarizes the current state of the field and examines specific issues in drug delivery and advanced delivery technologies, such as the use of nanotechnology in dermal drug delivery and advanced drug delivery systems for biologics. This authoritative resource: Covers each main stage of the drug development process, including selecting pharmaceutical candidates and evaluating their physicochemical characteristics Describes the role and application of mathematical modelling and the influence of drug transporters in pharmacokinetics and drug disposition Details the physiology and barriers to drug delivery for each administration route Presents a historical perspective and a look into the possible future of advanced drug delivery systems Explores nanotechnology and cell-mediated drug delivery, including applications for targeted delivery and toxicological and safety issues Includes comprehensive references and links to the primary literature Edited by a team of of internationally-recognized experts, Fundamentals of Drug Delivery is essential reading for researchers, industrial scientists, and advanced students in all areas of drug delivery including pharmaceutics, pharmaceutical sciences, biomedical engineering, polymer and materials science, and chemical and biochemical engineering.
Offers a comprehensive guide to the isolation, properties and applications of chitin and chitosan Chitin and Chitosan: Properties and Applications presents a comprehensive review of the isolation, properties and applications of chitin and chitosan. These promising biomaterials have the potential to be broadly applied and there is a growing market for these biopolymers in areas such as medical and pharmaceutical, packaging, agricultural, textile, cosmetics, nanoparticles and more. The authors – noted experts in the field – explore the isolation, characterization and the physical and chemical properties of chitin and chitosan. They also examine their properties such as hydrogels, immunomodulation and biotechnology, antimicrobial activity and chemical enzymatic modifications. The book offers an analysis of the myriad medical and pharmaceutical applications as well as a review of applications in other areas. In addition, the authors discuss regulations, markets and perspectives for the use of chitin and chitosan. This important book: Offers a thorough review of the isolation, properties and applications of chitin and chitosan. Contains information on the wide-ranging applications and growing market demand for chitin and chitosan Includes a discussion of current regulations and the outlook for the future Written for Researchers in academia and industry who are working in the fields of chitin and chitosan, Chitin and Chitosan: Properties and Applications offers a review of these promising biomaterials that have great potential due to their material properties and biological functionalities.