Download Free Novel Gamma Ray And Thermal Neutron Scintillators Book in PDF and EPUB Free Download. You can read online Novel Gamma Ray And Thermal Neutron Scintillators and write the review.

In this book, bromide and iodide scintillators, which have been investigated for the past four years, are presented. Three major groups of compounds were studied; lanthanide trihalides LnX3, (pseudo)-elpasolites M2ALnX6 and ternary halides AmLnnXo. Where M and A are alkali cations, Ln is a rare earth cation and X is a halide anion. Some materials show interesting -scintillation properties. LuI3: Ce3+, one of lanthanide trihalides, has a record high light output of 98,000 photons/MeV and a fast response of 35 ns. Two other groups, (pseudo)-elpasolites and ternary halides, show relatively low light yields. For thermal neutron scintillator, the focus was on (pseudo)-elpasolites M2LiLnX6 and ternary halides LimLnnXo groups. Rb2LiYBr6: Ce3+ shows an excellent neutron peak resolution of 3.6 %. This is the best neutron peak resolution ever reported. Together with the large / ratio of 0.74, Rb2LiYBr6: Ce3+ offers the possibility of excellent neutron/ discrimination. The highest thermal neutron scintillation light yield of 83,000 photons/neutron is also reported for Rb2LiYBr6: Ce3+. The analysis for all halide scintillators is also presented. Limitation in their light yields and response times is discussed.
The Theory and Practice of Scintillation Counting is a comprehensive account of the theory and practice of scintillation counting. This text covers the study of the scintillation process, which is concerned with the interactions of radiation and matter; the design of the scintillation counter; and the wide range of applications of scintillation counters in pure and applied science. The book is easy to read despite the complex nature of the subject it attempts to discuss. It is organized such that the first five chapters illustrate the fundamental concepts of scintillation counting. Chapters 6 to 10 detail the properties and applications of organic scintillators, while the next four chapters discuss inorganic scintillators. The last two chapters provide a review of some outstanding problems and a postscript. Nuclear physicists, radiation technologists, and postgraduate students of nuclear physics will find the book a good reference material.
This book introduces the physics and chemistry of plastic scintillators (fluorescent polymers) that are able to emit light when exposed to ionizing radiation, discussing their chemical modification in the early 1950s and 1960s, as well as the renewed upsurge in interest in the 21st century. The book presents contributions from various researchers on broad aspects of plastic scintillators, from physics, chemistry, materials science and applications, covering topics such as the chemical nature of the polymer and/or the fluorophores, modification of the photophysical properties (decay time, emission wavelength) and loading of additives to make the material more sensitive to, e.g., fast neutrons, thermal neutrons or gamma rays. It also describes the benefits of recent technological advances for plastic scintillators, such as nanomaterials and quantum dots, which allow features that were previously not achievable with regular organic molecules or organometallics.
Radiation detection is key to experimental nuclear physics as well as underpinning a wide range of applications in nuclear decommissioning, homeland security and medical imaging. This book presents the state-of-the-art in radiation detection of light and heavy ions, beta particles, gamma rays and neutrons. The underpinning physics of different detector technologies is presented, and their performance is compared and contrasted. Detector technology likely to be encountered in contemporary international laboratories is also emphasized. There is a strong focus on experimental design and mapping detector technology to the needs of a particular measurement problem. This book will be invaluable to PhD students in experimental nuclear physics and nuclear technology, as well as undergraduate students encountering projects based on radiation detection for the first time. Key Features Provides clear, concise descriptions of key detection techniques Describes detector types with "telescopic depth", so readers can go as deep as they wish Covers real-world applications including short case studies in industry
The handbook centers on detection techniques in the field of particle physics, medical imaging and related subjects. It is structured into three parts. The first one is dealing with basic ideas of particle detectors, followed by applications of these devices in high energy physics and other fields. In the last part the large field of medical imaging using similar detection techniques is described. The different chapters of the book are written by world experts in their field. Clear instructions on the detection techniques and principles in terms of relevant operation parameters for scientists and graduate students are given.Detailed tables and diagrams will make this a very useful handbook for the application of these techniques in many different fields like physics, medicine, biology and other areas of natural science.
Comprehensive overview of the spectroscopic, mineralogical, and geochemical techniques used in planetary remote sensing.
This volume provides a broad overview of the latest achievements in scintillator development, from theory to applications, and aiming for a deeper understanding of fundamental processes, as well as the discovery and availability of components for the production of new generations of scintillation materials. It includes papers on the microtheory of scintillation and the initial phase of luminescence development, applications of the various materials, and development and characterization of ionizing radiation detection equipment. The book also touches upon the increased demand for cryogenic scintillators, the renaissance of garnet materials for scintillator applications, nano-structuring in scintillator development, development and applications for security, and exploration of hydrocarbons and ecological monitoring.
This proceedings book presents dual approaches to examining new theoretical models and their applicability in the search for new scintillation materials and, ultimately, the development of industrial technologies. The ISMART conferences bring together the radiation detector community, from fundamental research scientists to applied physics experts, engineers, and experts on the implementation of advanced solutions. This scientific forum builds a bridge between the different parts of the community and is the basis for multidisciplinary, cooperative research and development efforts. The main goals of the conference series are to review the latest results in scintillator development, from theory to applications, and to arrive at a deeper understanding of fundamental processes, as well as to discover components for the production of new generations of scintillation materials. The book highlights recent findings and hypotheses, key advances, as well as exotic detector designs and solutions, and includes papers on the microtheory of scintillation and the initial phase of luminescence development, applications of the various materials, as well as the development and characterization of ionizing radiation detection equipment. It also touches on the increased demand for cryogenic scintillators, the renaissance of garnet materials for scintillator applications, nano-structuring in scintillator development, trends in and applications for security, and exploration of hydrocarbons and ecological monitoring.
This second open access volume of the handbook series deals with detectors, large experimental facilities and data handling, both for accelerator and non-accelerator based experiments. It also covers applications in medicine and life sciences. A joint CERN-Springer initiative, the "Particle Physics Reference Library" provides revised and updated contributions based on previously published material in the well-known Landolt-Boernstein series on particle physics, accelerators and detectors (volumes 21A, B1,B2,C), which took stock of the field approximately one decade ago. Central to this new initiative is publication under full open access
This book presents a complete global examination of the complications, diagnoses, and management of HIV infections. This is essential for the HIV specialist and for those involved in HIV care, this book provides: information on the constantly changing and expanding drug therapies and treatment strategies for HIV the latest developments and frequently updated treatment guidelines includes new chapter on global efforts against HIV/AIDS. Draws from author's international experience includes a chapter on HIV and aging-hot topic in the field looks at the expansion and routinization of HIV testing a complete global examination of the complications, diagnoses, and management of HIV infections expert and authoriatative advice from Joseph R. Masci; Director of Medicine at Elmhurst Hospital Center in New York, who is highly respected in the field user friendly sections: core curriculum in HIV medicine, special populations, and systems of care up-to-date references, ensuring you have access to the most recent information