Download Free Novel Concepts In Catalysis And Chemical Reactors Book in PDF and EPUB Free Download. You can read online Novel Concepts In Catalysis And Chemical Reactors and write the review.

The chemical process industry faces a tremendous challenge of supplying a growing and ever more demanding global population with the products we need. The average efficiency at which resources are converted into the final products is however still dramatically low. The most obvious solution is to carry out chemical conversions at much higher yields and selectivity and this is where active and selective catalysts and efficient chemical reactors play a crucial role. Written by an international team of highly experienced editors and authors from academia and industry, this ready reference focuses on how to enhance the efficiency of catalysts and reactors. It treats key topics such as molecular modeling, zeolites, MOFs, catalysis at room temperature, biocatalysis, catalysis for sustainability, structured reactors including membrane and microchannel reactors, switching from batch to continuous reactors, application of alternative energies and process intensification. By including recent achievements and trends, the book provides an up-to-date insight into the most important developments in the field of industrial catalysis and chemical reactor engineering. In addition, several ways of improving efficiency, selectivity, activity and improved methods for scale-up, modeling and design are presented in a compact manner.
Designed to give chemical engineers background for managing chemical reactions, this text examines the behavior of chemical reactions and reactors; conservation equations for reactors; heterogeneous reactions; fluid-fluid and fluid-solid reaction systems; heterogeneous catalysis and catalytic kinetics; diffusion and heterogeneous catalysis; and analyses and design of heterogeneous reactors. 1976 edition.
The chemical process industry faces a tremendous challenge of supplying a growing and ever more demanding global population with the products we need. The average efficiency at which resources are converted into the final products is however still dramatically low. The most obvious solution is to carry out chemical conversions at much higher yields and selectivity and this is where active and selective catalysts and efficient chemical reactors play a crucial role. Written by an international team of highly experienced editors and authors from academia and industry, this ready reference focuses on how to enhance the efficiency of catalysts and reactors. It treats key topics such as molecular modeling, zeolites, MOFs, catalysis at room temperature, biocatalysis, catalysis for sustainability, structured reactors including membrane and microchannel reactors, switching from batch to continuous reactors, application of alternative energies and process intensification. By including recent achievements and trends, the book provides an up-to-date insight into the most important developments in the field of industrial catalysis and chemical reactor engineering. In addition, several ways of improving efficiency, selectivity, activity and improved methods for scale-up, modeling and design are presented in a compact manner.
This book explores a balance between energy and material, applied to chemical reactors with catalysis, to achieve a given purpose. It includes the fundamentals of chemical reaction engineering and explains reactor design fundamentals. The book spans the full range-from the fundamentals of kinetics and heterogeneous catalysis via modern experimental and theoretical results of model studies-to their equivalent large-scale industrial production processes. It also includes significant developments, with recent research case studies and literature.
A practical approach to chemical reaction kinetics—from basic concepts to laboratory methods—featuring numerous real-world examples and case studies This book focuses on fundamental aspects of reaction kinetics with an emphasis on mathematical methods for analyzing experimental data and interpreting results. It describes basic concepts of reaction kinetics, parameters for measuring the progress of chemical reactions, variables that affect reaction rates, and ideal reactor performance. Mathematical methods for determining reaction kinetic parameters are described in detail with the help of real-world examples and fully-worked step-by-step solutions. Both analytical and numerical solutions are exemplified. The book begins with an introduction to the basic concepts of stoichiometry, thermodynamics, and chemical kinetics. This is followed by chapters featuring in-depth discussions of reaction kinetics; methods for studying irreversible reactions with one, two and three components; reversible reactions; and complex reactions. In the concluding chapters the author addresses reaction mechanisms, enzymatic reactions, data reconciliation, parameters, and examples of industrial reaction kinetics. Throughout the book industrial case studies are presented with step-by-step solutions, and further problems are provided at the end of each chapter. Takes a practical approach to chemical reaction kinetics basic concepts and methods Features numerous illustrative case studies based on the author’s extensive experience in the industry Provides essential information for chemical and process engineers, catalysis researchers, and professionals involved in developing kinetic models Functions as a student textbook on the basic principles of chemical kinetics for homogeneous catalysis Describes mathematical methods to determine reaction kinetic parameters with the help of industrial case studies, examples, and step-by-step solutions Chemical Reaction Kinetics is a valuable working resource for academic researchers, scientists, engineers, and catalyst manufacturers interested in kinetic modeling, parameter estimation, catalyst evaluation, process development, reactor modeling, and process simulation. It is also an ideal textbook for undergraduate and graduate-level courses in chemical kinetics, homogeneous catalysis, chemical reaction engineering, and petrochemical engineering, biotechnology.
Focused on the undergraduate audience, Chemical Reaction Engineering provides students with complete coverage of the fundamentals, including in-depth coverage of chemical kinetics. By introducing heterogeneous catalysis early in the book, the text gives students the knowledge they need to solve real chemistry and industrial problems. An emphasis on problem-solving and numerical techniques ensures students learn and practice the skills they will need later on, whether for industry or graduate work.
This comprehensive review, prepared by 24 experts, many of whom are pioneers of the subject, brings together in one place over 40 years of research in this unique publication. This book will assist R & D specialists, research chemists, chemical engineers or process managers harnessing periodic operations to improve their process plant performance. Periodic Operation of Reactors covers process fundamentals, research equipment and methods and provides "the state of the art" for the periodic operation of many industrially important catalytic reactions. Emphasis is on experimental results, modeling and simulation. Combined reaction and separation are dealt with, including simulated moving bed chromatographic, pressure and temperature swing and circulating bed reactors. Thus, Periodic Operation of Reactors offers readers a single comprehensive source for the broad and diverse new subject. This exciting new publication is a "must have" for any professional working in chemical process research and development. - A comprehensive reference on the fundamentals, development and applications of periodic operation - Contributors and editors include the pioneers of the subject as well as the leading researchers in the field - Covers both fundamentals and the state of the art for each operation scenario, and brings all types of periodic operation together in a single volume - Discussion is focused on experimental results rather than theoretical ones; provides a rich source of experimental data, plus process models - Accompanying website with modelling data
A comprehensive introduction to chemical engineering kinetics Providing an introduction to chemical engineering kinetics and describing the empirical approaches that have successfully helped engineers describe reacting systems, An Introduction to Chemical Engineering Kinetics & Reactor Design is an excellent resource for students of chemical engineering. Truly introductory in nature, the text emphasizes those aspects of chemical kinetics and material and energy balances that form the broad foundation for understanding reactor design. For those seeking an introduction to the subject, the book provides a firm and lasting foundation for continuing study and practice.
Catalytic Reactors presents several key aspects of reactor design in Chemical and Process Engineering. Starting with the fundamental science across a broad interdisciplinary field, this graduate level textbook offers a concise overview on reactor and process design for students, scientists and practitioners new to the field. This book aims to collate into a comprehensive and well-informed work of leading researchers from north America, western Europe and south-east Asia. The editor and international experts discuss state-of-the-art applications of multifunctional reactors, biocatalytic membrane reactors, micro-flow reactors, industrial catalytic reactors, micro trickle bed reactors and multiphase catalytic reactors. The use of catalytic reactor technology is essential for the economic viability of the chemical manufacturing industry. The importance of Chemical and Process Engineering and efficient design of reactors are another focus of the book. Especially the combination of advantages from both catalysis and chemical reaction technology for optimization and intensification as essential factors in the future development of reactors and processes are discussed. Furthermore, options that can drastically influence reaction processes, e.g. choice of catalysts, alternative reaction pathways, mass and heat transfer effects, flow regimes and inherent design of catalytic reactors are reviewed in detail. Focuses on the state-of-the-art applications of catalytic reactors and optimization in the design and operation of industrial catalytic reactors Insights into transfer of knowledge from laboratory science to industry For students and researchers in Chemical and Mechanical Engineering, Chemistry, Industrial Catalysis and practising Engineers
An essential introduction to the organic chemicals industry—in the context of globalization, advances in technology, and environmental concerns Providing 95 percent of the 500 billion pounds of organic chemicals produced in the world, the petroleum and natural gas industries are responsible for products that ensure our present quality of life. Products as diverse as gasoline, plastics, detergents, fibers, pesticides, tires, lipstick, shampoo, and sunscreens are based on seven raw materials derived from petroleum and natural gas. In an updated and expanded Third Edition, Industrial Organic Chemicals examines why each of these chemical building blocks—ethylene, propylene, C4 olefins (butenes and butadiene), benzene toluene, the xylenes, and methane—is preferred over another in the context of an environmental issue or manufacturing process, as well as their individual chemistry, derivatives, method of manufacture, uses, and economic significance. The new edition details the seismic shifts in the world's chemistry industry away from the United States, Western Europe and Japan, transforming the Middle East and Asia-Pacific region, especially China, into major players. The book also details: The impact of globalization on the patterns of worldwide transportation of chemicals, including methods of shipping chemicals The technological advances in the area of polymerization and catalysis, including catalyst design and single-site catalysts Chemicals for electronics, with much new material on conducting polymers, photovoltaic cells, and related materials The discovery of vast reserves of shale gas and shale oil, altering long-term predictions of resource depletion in the United States and other countries Commercial and market aspects of the chemical industry, with coverage of emerging new companies such as INEOS, Formosa Plastics, LyondellBasell, and SABIC With expanded coverage on the vital role of green chemistry, renewables, chemicals and fuels on issues of sustainability and climate change, Industrial Organic Chemicals offers an unparalleled examination of what is at the heart of this multi-billion dollar industry, how globalization has transformed it, and its ever growing role in preserving the Earth and its resources.