Download Free Nosql And Sql Data Modeling Book in PDF and EPUB Free Download. You can read online Nosql And Sql Data Modeling and write the review.

The Concept and Object Modeling Notation (COMN) is able to cover the full spectrum of analysis and design.
This book offers a comprehensive introduction to relational (SQL) and non-relational (NoSQL) databases. The authors thoroughly review the current state of database tools and techniques, and examine coming innovations. The book opens with a broad look at data management, including an overview of information systems and databases, and an explanation of contemporary database types: SQL and NoSQL databases, and their respective management systems The nature and uses of Big Data A high-level view of the organization of data management Data Modeling and Consistency Chapter-length treatment is afforded Data Modeling in both relational and graph databases, including enterprise-wide data architecture, and formulas for database design. Coverage of languages extends from an overview of operators, to SQL and and QBE (Query by Example), to integrity constraints and more. A full chapter probes the challenges of Ensuring Data Consistency, covering: Multi-User Operation Troubleshooting Consistency in Massive Distributed Data Comparison of the ACID and BASE consistency models, and more System Architecture also gets from its own chapter, which explores Processing of Homogeneous and Heterogeneous Data; Storage and Access Structures; Multi-dimensional Data Structures and Parallel Processing with MapReduce, among other topics. Post-Relational and NoSQL Databases The chapter on post-relational databases discusses the limits of SQL – and what lies beyond, including Multi-Dimensional Databases, Knowledge Bases and and Fuzzy Databases. A final chapter covers NoSQL Databases, along with Development of Non-Relational Technologies, Key-Value, Column-Family and Document Stores XML Databases and Graphic Databases, and more The book includes more than 100 tables, examples and illustrations, and each chapter offers a list of resources for further reading. SQL & NoSQL Databases conveys the strengths and weaknesses of relational and non-relational approaches, and shows how to undertake development for big data applications. The book benefits readers including students and practitioners working across the broad field of applied information technology. This textbook has been recommended and developed for university courses in Germany, Austria and Switzerland.
'NoSQL Distilled' is designed to provide you with enough background on how NoSQL databases work, so that you can choose the right data store without having to trawl the whole web to do it. It won't answer your questions definitively, but it should narrow down the range of options you have to consider.
NoSQL for Mere Mortals is an easy, practical guide to succeeding with NoSQL in your environment. Students are guided step-by-step through choosing technologies, designing high-performance databases, and planning for long-term maintenance. The author introduces each type of NoSQL database, shows how to install and manage them, and demonstrates how to leverage their features while avoiding common mistakes that lead to poor performance and unmet requirements. He uses four popular NoSQL databases as reference models: MongoDB, a document database; Cassandra, a column family data store; Redis, a key-value database; and Neo4j, a graph database.
Congratulations! You completed the MongoDB application within the given tight timeframe and there is a party to celebrate your application’s release into production. Although people are congratulating you at the celebration, you are feeling some uneasiness inside. To complete the project on time required making a lot of assumptions about the data, such as what terms meant and how calculations are derived. In addition, the poor documentation about the application will be of limited use to the support team, and not investigating all of the inherent rules in the data may eventually lead to poorly-performing structures in the not-so-distant future. Now, what if you had a time machine and could go back and read this book. You would learn that even NoSQL databases like MongoDB require some level of data modeling. Data modeling is the process of learning about the data, and regardless of technology, this process must be performed for a successful application. You would learn the value of conceptual, logical, and physical data modeling and how each stage increases our knowledge of the data and reduces assumptions and poor design decisions. Read this book to learn how to do data modeling for MongoDB applications, and accomplish these five objectives: Understand how data modeling contributes to the process of learning about the data, and is, therefore, a required technique, even when the resulting database is not relational. That is, NoSQL does not mean NoDataModeling! Know how NoSQL databases differ from traditional relational databases, and where MongoDB fits. Explore each MongoDB object and comprehend how each compares to their data modeling and traditional relational database counterparts, and learn the basics of adding, querying, updating, and deleting data in MongoDB. Practice a streamlined, template-driven approach to performing conceptual, logical, and physical data modeling. Recognize that data modeling does not always have to lead to traditional data models! Distinguish top-down from bottom-up development approaches and complete a top-down case study which ties all of the modeling techniques together. This book is written for anyone who is working with, or will be working with MongoDB, including business analysts, data modelers, database administrators, developers, project managers, and data scientists. There are three sections: In Section I, Getting Started, we will reveal the power of data modeling and the tight connections to data models that exist when designing any type of database (Chapter 1), compare NoSQL with traditional relational databases and where MongoDB fits (Chapter 2), explore each MongoDB object and comprehend how each compares to their data modeling and traditional relational database counterparts (Chapter 3), and explain the basics of adding, querying, updating, and deleting data in MongoDB (Chapter 4). In Section II, Levels of Granularity, we cover Conceptual Data Modeling (Chapter 5), Logical Data Modeling (Chapter 6), and Physical Data Modeling (Chapter 7). Notice the “ing” at the end of each of these chapters. We focus on the process of building each of these models, which is where we gain essential business knowledge. In Section III, Case Study, we will explain both top down and bottom up development approaches and go through a top down case study where we start with business requirements and end with the MongoDB database. This case study will tie together all of the techniques in the previous seven chapters. Nike Senior Data Architect Ryan Smith wrote the foreword. Key points are included at the end of each chapter as a way to reinforce concepts. In addition, this book is loaded with hands-on exercises, along with their answers provided in Appendix A. Appendix B contains all of the book’s references and Appendix C contains a glossary of the terms used throughout the text.
The topic of NoSQL databases has recently emerged, to face the Big Data challenge, namely the ever increasing volume of data to be handled. It is now recognized that relational databases are not appropriate in this context, implying that new database models and techniques are needed. This book presents recent research works, covering the following basic aspects: semantic data management, graph databases, and big data management in cloud environments. The chapters in this book report on research about the evolution of basic concepts such as data models, query languages, and new challenges regarding implementation issues.
A beginner's guide to get you up and running with Cassandra, DynamoDB, HBase, InfluxDB, MongoDB, Neo4j, and Redis Key Features Covers the basics of 7 NoSQL databases and how they are used in the enterprises Quick introduction to MongoDB, DynamoDB, Redis, Cassandra, Neo4j, InfluxDB, and HBase Includes effective techniques for database querying and management Book Description This is the golden age of open source NoSQL databases. With enterprises having to work with large amounts of unstructured data and moving away from expensive monolithic architecture, the adoption of NoSQL databases is rapidly increasing. Being familiar with the popular NoSQL databases and knowing how to use them is a must for budding DBAs and developers. This book introduces you to the different types of NoSQL databases and gets you started with seven of the most popular NoSQL databases used by enterprises today. We start off with a brief overview of what NoSQL databases are, followed by an explanation of why and when to use them. The book then covers the seven most popular databases in each of these categories: MongoDB, Amazon DynamoDB, Redis, HBase, Cassandra, InfluxDB, and Neo4j. The book doesn't go into too much detail about each database but teaches you enough to get started with them. By the end of this book, you will have a thorough understanding of the different NoSQL databases and their functionalities, empowering you to select and use the right database according to your needs. What you will learn Understand how MongoDB provides high-performance, high-availability, and automatic scaling Interact with your Neo4j instances via database queries, Python scripts, and Java application code Get familiar with common querying and programming methods to interact with Redis Study the different types of problems Cassandra can solve Work with HBase components to support common operations such as creating tables and reading/writing data Discover data models and work with CRUD operations using DynamoDB Discover what makes InfluxDB a great choice for working with time-series data Who this book is for If you are a budding DBA or a developer who wants to get started with the fundamentals of NoSQL databases, this book is for you. Relational DBAs who want to get insights into the various offerings of popular NoSQL databases will also find this book to be very useful.
Advanced data management has always been at the core of efficient database and information systems. Recent trends like big data and cloud computing have aggravated the need for sophisticated and flexible data storage and processing solutions. This book provides a comprehensive coverage of the principles of data management developed in the last decades with a focus on data structures and query languages. It treats a wealth of different data models and surveys the foundations of structuring, processing, storing and querying data according these models. Starting off with the topic of database design, it further discusses weaknesses of the relational data model, and then proceeds to convey the basics of graph data, tree-structured XML data, key-value pairs and nested, semi-structured JSON data, columnar and record-oriented data as well as object-oriented data. The final chapters round the book off with an analysis of fragmentation, replication and consistency strategies for data management in distributed databases as well as recommendations for handling polyglot persistence in multi-model databases and multi-database architectures. While primarily geared towards students of Master-level courses in Computer Science and related areas, this book may also be of benefit to practitioners looking for a reference book on data modeling and query processing. It provides both theoretical depth and a concise treatment of open source technologies currently on the market.
NoSQL Starter is a great resource for someone starting with NoSQL and an indispensable guide for technology decision makers. It is assumed that you have a background in RDBMS modeling and SQL and have had exposure to at least one of the programming languages – Java or JavaScript.Friendly, practical tutorial with lots of hints and tips from several experienced Solr users and developers.
Design great databases—from logical data modeling through physical schema definition. You will learn a framework that finally cracks the problem of merging data and process models into a meaningful and unified design that accounts for how data is actually used in production systems. Key to the framework is a method for taking the logical data model that is a static look at the definition of the data, and merging that static look with the process models describing how the data will be used in actual practice once a given system is implemented. The approach solves the disconnect between the static definition of data in the logical data model and the dynamic flow of the data in the logical process models. The design framework in this book can be used to create operational databases for transaction processing systems, or for data warehouses in support of decision support systems. The information manager can be a flat file, Oracle Database, IMS, NoSQL, Cassandra, Hadoop, or any other DBMS. Usage-Driven Database Design emphasizes practical aspects of design, and speaks to what works, what doesn’t work, and what to avoid at all costs. Included in the book are lessons learned by the author over his 30+ years in the corporate trenches. Everything in the book is grounded on good theory, yet demonstrates a professional and pragmatic approach to design that can come only from decades of experience. Presents an end-to-end framework from logical data modeling through physical schema definition. Includes lessons learned, techniques, and tricks that can turn a database disaster into a success. Applies to all types of database management systems, including NoSQL such as Cassandra and Hadoop, and mainstream SQL databases such as Oracle and SQL Server What You'll Learn Create logical data models that accurately reflect the real world of the user Create usage scenarios reflecting how applications will use a new database Merge static data models with dynamic process models to create resilient yet flexible database designs Support application requirements by creating responsive database schemas in any database architecture Cope with big data and unstructured data for transaction processing and decision support systems Recognize when relational approaches won’t work, and when to turn toward NoSQL solutions such as Cassandra or Hadoop Who This Book Is For System developers, including business analysts, database designers, database administrators, and application designers and developers who must design or interact with database systems