Download Free Normalizers Of Finite Von Neumann Algebras Book in PDF and EPUB Free Download. You can read online Normalizers Of Finite Von Neumann Algebras and write the review.

The first book devoted to the general theory of finite von Neumann algebras.
The text covers fundamentals of von Neumann algebras, including the Tomita's theory of von Neumann algebras and the latest developments.
Written in lucid language, this valuable text discusses fundamental concepts of von Neumann algebras including bounded linear operators in Hilbert spaces, finite von Neumann algebras, linear forms on algebra of operators, geometry of projections and classification of von Neumann algebras in an easy to understand manner. The revised text covers new material including the first two examples of factors of type II^1, an example of factor of type III and theorems for von Neumann algebras with a cyclic and separating vector. Pedagogical features including solved problems and exercises are interspersed throughout the book.
In this book, we study, under the name of von Neumann algebras, those algebras generally known as “rings of operators“ or “W*-algebras.“ The new terminology, suggested by J. Dieudonng, is fully justified from the historical point of view. Certain of the results are valid for more general algebras. We have, however systematically avoided this kind of generalization, except when it would facilitate the study of von Neumann algebras themselves. Parts I and I1 comprise those results which at present appear to’be the most useful for applications, although we do not embark on the study of those applications. Part 111, which is more technical, is primarily intended for specialists; it is virtually independent of Part 11.
Noncommutative Geometry is one of the most deep and vital research subjects of present-day Mathematics. Its development, mainly due to Alain Connes, is providing an increasing number of applications and deeper insights for instance in Foliations, K-Theory, Index Theory, Number Theory but also in Quantum Physics of elementary particles. The purpose of the Summer School in Martina Franca was to offer a fresh invitation to the subject and closely related topics; the contributions in this volume include the four main lectures, cover advanced developments and are delivered by prominent specialists.
In algebraic topology some classical invariants - such as Betti numbers and Reidemeister torsion - are defined for compact spaces and finite group actions. They can be generalized using von Neumann algebras and their traces, and applied also to non-compact spaces and infinite groups. These new L2-invariants contain very interesting and novel information and can be applied to problems arising in topology, K-Theory, differential geometry, non-commutative geometry and spectral theory. The book, written in an accessible manner, presents a comprehensive introduction to this area of research, as well as its most recent results and developments.
Subfactors have been a subject of considerable research activity for about 15 years and are known to have significant relations with other fields such as low dimensional topology and algebraic quantum field theory. These notes give an introduction to the subject suitable for a student who has only a little familiarity with the theory of Hilbert space. A new pictorial approach to subfactors is presented in a late ch apter.
This book provides an introduction to noncommutative geometry and presents a number of its recent applications to particle physics. It is intended for graduate students in mathematics/theoretical physics who are new to the field of noncommutative geometry, as well as for researchers in mathematics/theoretical physics with an interest in the physical applications of noncommutative geometry. In the first part, we introduce the main concepts and techniques by studying finite noncommutative spaces, providing a “light” approach to noncommutative geometry. We then proceed with the general framework by defining and analyzing noncommutative spin manifolds and deriving some main results on them, such as the local index formula. In the second part, we show how noncommutative spin manifolds naturally give rise to gauge theories, applying this principle to specific examples. We subsequently geometrically derive abelian and non-abelian Yang-Mills gauge theories, and eventually the full Standard Model of particle physics, and conclude by explaining how noncommutative geometry might indicate how to proceed beyond the Standard Model.
This textbook presents in a concise and self-contained way the advanced fundamental mathematical structures in quantum theory. It is based on lectures prepared for a 6 months course for MSc students. The reader is introduced to the beautiful interconnection between logic, lattice theory, general probability theory, and general spectral theory including the basic theory of von Neumann algebras and of the algebraic formulation, naturally arising in the study of the mathematical machinery of quantum theories. Some general results concerning hidden-variable interpretations of QM such as Gleason's and the Kochen-Specker theorems and the related notions of realism and non-contextuality are carefully discussed. This is done also in relation with the famous Bell (BCHSH) inequality concerning local causality. Written in a didactic style, this book includes many examples and solved exercises. The work is organized as follows. Chapter 1 reviews some elementary facts and properties of quantum systems. Chapter 2 and 3 present the main results of spectral analysis in complex Hilbert spaces. Chapter 4 introduces the point of view of the orthomodular lattices' theory. Quantum theory form this perspective turns out to the probability measure theory on the non-Boolean lattice of elementary observables and Gleason's theorem characterizes all these measures. Chapter 5 deals with some philosophical and interpretative aspects of quantum theory like hidden-variable formulations of QM. The Kochen-Specker theorem and its implications are analyzed also in relation BCHSH inequality, entanglement, realism, locality, and non-contextuality. Chapter 6 focuses on the algebra of observables also in the presence of superselection rules introducing the notion of von Neumann algebra. Chapter 7 offers the idea of (groups of) quantum symmetry, in particular, illustrated in terms of Wigner and Kadison theorems. Chapter 8 deals with the elementary ideas and results of the so called algebraic formulation of quantum theories in terms of both *-algebras and C*-algebras. This book should appeal to a dual readership: on one hand mathematicians that wish to acquire the tools that unlock the physical aspects of quantum theories; on the other physicists eager to solidify their understanding of the mathematical scaffolding of quantum theories.