Download Free Nontopological Solitons Book in PDF and EPUB Free Download. You can read online Nontopological Solitons and write the review.

Successful modeling of quantum chromodynamics with a relativistic quark-soliton field theory has been developed over the past decade. As introduced by R Freidberg and T D Lee, the foundation of the model involves the chromodielectric properties of the physical vacuum, which yield absolute color confinement. The model allows for the consistent calculation of the dynamics of hadrons and hadronic reactions. The book summarizes and expands upon the extensive literature on the subject, concentrating on the Friedberg-Lee model and variations thereof. New results and future directions are included. Theory, mathematical methods and numerical results are emphasized.
This textbook gives an instructive view of solitons and their applications for advanced students of physics.
This book provides an up-to-date overview of mathematical theories and research results on solitons, presenting related mathematical methods and applications as well as numerical experiments. Different types of soliton equations are covered along with their dynamical behaviors and applications from physics, making the book an essential reference for researchers and graduate students in applied mathematics and physics. Contents Introduction Inverse scattering transform Asymptotic behavior to initial value problems for some integrable evolution nonlinear equations Interaction of solitons and its asymptotic properties Hirota method Bäcklund transformations and the infinitely many conservation laws Multi-dimensional solitons and their stability Numerical computation methods for some nonlinear evolution equations The geometric theory of solitons Global existence and blow up for the nonlinear evolution equations The soliton movements of elementary particles in nonlinear quantum field The theory of soliton movement of superconductive features The soliton movements in condensed state systemsontents
An introduction to integrable and non-integrable scalar field models, with topological and non-topological soliton solutions. Focusing on both topological and non-topological solitons, this book brings together discussion of solitary waves and construction of soliton solutions and provides a discussion of solitons using simple model examples.
Solitons were discovered by John Scott Russel in 1834, and have interested scientists and mathematicians ever since. They have been the subject of a large body of research in a wide variety of fields of physics and mathematics, not to mention engineering and other branches of science such as biology. This volume comprises the written versions of the talks presented at a workshop held at Queen's University in 1997, an interdisciplinary meeting wherein top researchers from many fields could meet, interact, and exchange ideas. Topics covered include mathematical and numerical aspects of solitons, as well as applications of solitons to nuclear and particle physics, cosmology, and condensed-matter physics. The book should be of interest to researchers in any field in which solitons are encountered.
In these volumes, the most significant of the collected papers of the Chinese-American theoretical physicist Tsung-Dao Lee are printed. A complete list of his published papers, in order of publication, appears in the Bibliography of T.D. Lee. The papers have been arranged into ten categories, in most cases according to the subject matter. At the beginning of each of the first eight categories of papers, there is a commentary on the content and significance of all of the papers in the category. The two short final categories do not have any commentaries. The editor would like to thank Dr. Richard Friedberg for his assistance in the early stages of the editorial work on this project, as well as for writing commentaries on the papers of Categories III and IV. I would also like to thank Dr. Norman Christ for writing the commentary on the papers of Category VII. The assistance of Irene Tramm was in valuable in many aspects of preparing this collection, including locating copies of Lee's papers. GERALD FEINBERG List of Categories of T.D. Lee's Papers Volume 1 I. Weak Interactions II. Early Papers on Astrophysics and Hydrodynamics III. Statistical Mechanics IV. Polarons and Solitons Volume 2 V. Quantum Field Theory VI. Symmetry Principles Volume 3 VII. Discrete Physics VIII. Strong Interaction Models IX. Historical Papers X. Gravity (Continuum Theory) Contents (Volume 1)* Introduction (by G. Feinberg) ............................................................ xi Bibliography of T.D. Lee ................................................................. xv I. Weak Interactions Commentary ................................................................... .
“The Frontiers of Knowhledge (to coin a phrase) are always on the move. - day’s discovery will tomorrow be part of the mental furniture of every research worker. By the end of next week it will be in every course of graduate lectures. Within the month there will be a clamour to have it in the undergraduate c- riculum. Next year, I do believe, it will seem so commonplace that it may be assumed to be known by every schoolboy. “The process of advancing the line of settlements, and cultivating and c- ilizing the new territory, takes place in stages. The original papers are p- lished, to the delight of their authors, and to the critical eyes of their readers. Review articles then provide crude sketch plans, elementary guides through the forests of the literature. Then come the monographs, exact surveys, mapping out the ground that has been won, adjusting claims for priority, putting each fact or theory into its place” (J. M. Ziman, Principles of the Theory of Solids (Cambridge University Press, 1972) p.v). The main purpose of the book is to present the mechanism of - perconductivity discovered in 1986 by J. G. Bednorz and K. A. Müller, and to discuss the physics of superconductors. The last chapter of the book presents analysis of tunneling measurements in cuprates. The book is - dressed to researchers and graduate students in all branches of exact sciences.
This newly updated volume of the Encyclopedia of Complexity and Systems Science (ECSS) presents several mathematical models that describe this physical phenomenon, including the famous non-linear equation Korteweg-de-Vries (KdV) that represents the canonical form of solitons. Also, there exists a class of nonlinear partial differential equations that led to solitons, e.g., Kadomtsev-Petviashvili (KP), Klein-Gordon (KG), Sine-Gordon (SG), Non-Linear Schrödinger (NLS), Korteweg-de-Vries Burger’s (KdVB), etc. Different linear mathematical methods can be used to solve these models analytically, such as the Inverse Scattering Transformation (IST), Adomian Decomposition Method, Variational Iteration Method (VIM), Homotopy Analysis Method (HAM) and Homotopy Perturbation Method (HPM). Other non-analytic methods use the computational techniques available in such popular mathematical packages as Mathematica, Maple, and MATLAB. The main purpose of this volume is to provide physicists, engineers, and their students with the proper methods and tools to solve the soliton equations, and to discover the new possibilities of using solitons in multi-disciplinary areas ranging from telecommunications to biology, cosmology, and oceanographic studies.
This book discusses particle physics and relativistic local field theory that is the main theoretical tool for analyzing particle physics. It is helpful for the professional physicist and to the serious graduate student of physics.
This unique book gives a unified presentation of the entire subject of particle physics, starting with a self-contained discussion of quantum field theory and going on with the symmetry and interaction of particles. It expresses the author's personal approach to the subject, and will be useful to beginning students as well as seasoned workers in the field.