Download Free Nonsmooth Variational Problems And Their Inequalities Book in PDF and EPUB Free Download. You can read online Nonsmooth Variational Problems And Their Inequalities and write the review.

This monograph focuses primarily on nonsmooth variational problems that arise from boundary value problems with nonsmooth data and/or nonsmooth constraints, such as multivalued elliptic problems, variational inequalities, hemivariational inequalities, and their corresponding evolution problems. It provides a systematic and unified exposition of comparison principles based on a suitably extended sub-supersolution method.
The aim of the book is to cover the three fundamental aspects of research in equilibrium problems: the statement problem and its formulation using mainly variational methods, its theoretical solution by means of classical and new variational tools, the calculus of solutions and applications in concrete cases. The book shows how many equilibrium problems follow a general law (the so-called user equilibrium condition). Such law allows us to express the problem in terms of variational inequalities. Variational inequalities provide a powerful methodology, by which existence and calculation of the solution can be obtained.
Until now, no book addressed convexity, monotonicity, and variational inequalities together. Generalized Convexity, Nonsmooth Variational Inequalities, and Nonsmooth Optimization covers all three topics, including new variational inequality problems defined by a bifunction.The first part of the book focuses on generalized convexity and generalized
This is part one of a two-volume work presenting a comprehensive treatment of the finite-dimensional variational inequality and complementarity problem. It covers the basic theory of finite dimensional variational inequalities and complementarity problems. Coverage includes abundant exercises as well as an extensive bibliography. The book will be an enduring reference on the subject and provide the foundation for its sustained growth.
This book reflects a significant part of authors' research activity dur ing the last ten years. The present monograph is constructed on the results obtained by the authors through their direct cooperation or due to the authors separately or in cooperation with other mathematicians. All these results fit in a unitary scheme giving the structure of this work. The book is mainly addressed to researchers and scholars in Pure and Applied Mathematics, Mechanics, Physics and Engineering. We are greatly indebted to Viorica Venera Motreanu for the careful reading of the manuscript and helpful comments on important issues. We are also grateful to our Editors of Kluwer Academic Publishers for their professional assistance. Our deepest thanks go to our numerous scientific collaborators and friends, whose work was so important for us. D. Motreanu and V. Radulescu IX Introduction The present monograph is based on original results obtained by the authors in the last decade. This book provides a comprehensive expo sition of some modern topics in nonlinear analysis with applications to the study of several classes of boundary value problems. Our framework includes multivalued elliptic problems with discontinuities, variational inequalities, hemivariational inequalities and evolution problems. The treatment relies on variational methods, monotonicity principles, topo logical arguments and optimization techniques. Excepting Sections 1 and 3 in Chapter 1 and Sections 1 and 3 in Chapter 2, the material is new in comparison with any other book, representing research topics where the authors contributed. The outline of our work is the following.
This volume contains a collection of papers based on lectures and presentations delivered at the International Conference on Constructive Nonsmooth Analysis (CNSA) held in St. Petersburg (Russia) from June 18-23, 2012. This conference was organized to mark the 50th anniversary of the birth of nonsmooth analysis and nondifferentiable optimization and was dedicated to J.-J. Moreau and the late B.N. Pshenichnyi, A.M. Rubinov, and N.Z. Shor, whose contributions to NSA and NDO remain invaluable. The first four chapters of the book are devoted to the theory of nonsmooth analysis. Chapters 5-8 contain new results in nonsmooth mechanics and calculus of variations. Chapters 9-13 are related to nondifferentiable optimization, and the volume concludes with four chapters containing interesting and important historical chapters, including tributes to three giants of nonsmooth analysis, convexity, and optimization: Alexandr Alexandrov, Leonid Kantorovich, and Alex Rubinov. The last chapter provides an overview and important snapshots of the 50-year history of convex analysis and optimization.
Nonlinear Differential Problems with Smooth and Nonsmooth Constraints systematically evaluates how to solve boundary value problems with smooth and nonsmooth constraints. Primarily covering nonlinear elliptic eigenvalue problems and quasilinear elliptic problems using techniques amalgamated from a range of sophisticated nonlinear analysis domains, the work is suitable for PhD and other early career researchers seeking solutions to nonlinear differential equations. Although an advanced work, the book is self-contained, requiring only graduate-level knowledge of functional analysis and topology. Whenever suitable, open problems are stated and partial solutions proposed. The work is accompanied by end-of-chapter problems and carefully curated references. - Builds from functional analysis and operator theory, to nonlinear elliptic systems and control problems - Outlines the evolution of the main ideas of nonlinear analysis and their roots in classical mathematics - Presented with numerous end-of-chapter exercises and sophisticated open problems - Illustrated with pertinent industrial and engineering numerical examples and applications - Accompanied by hundreds of curated references, saving readers hours of research in conducting literature analysis
This book provides a modern and comprehensive presentation of a wide variety of problems arising in nonlinear analysis, game theory, engineering, mathematical physics and contact mechanics. It includes recent achievements and puts them into the context of the existing literature. The volume is organized in four parts. Part I contains fundamental mathematical results concerning convex and locally Lipschits functions. Together with the Appendices, this foundational part establishes the self-contained character of the text. As the title suggests, in the following sections, both variational and topological methods are developed based on critical and fixed point results for nonsmooth functions. The authors employ these methods to handle the exemplary problems from game theory and engineering that are investigated in Part II, respectively Part III. Part IV is devoted to applications in contact mechanics. The book will be of interest to PhD students and researchers in applied mathematics as well as specialists working in nonsmooth analysis and engineering.
Variational Inequalities and Frictional Contact Problems contains a carefully selected collection of results on elliptic and evolutionary quasi-variational inequalities including existence, uniqueness, regularity, dual formulations, numerical approximations and error estimates ones. By using a wide range of methods and arguments, the results are presented in a constructive way, with clarity and well justified proofs. This approach makes the subjects accessible to mathematicians and applied mathematicians. Moreover, this part of the book can be used as an excellent background for the investigation of more general classes of variational inequalities. The abstract variational inequalities considered in this book cover the variational formulations of many static and quasi-static contact problems. Based on these abstract results, in the last part of the book, certain static and quasi-static frictional contact problems in elasticity are studied in an almost exhaustive way. The readers will find a systematic and unified exposition on classical, variational and dual formulations, existence, uniqueness and regularity results, finite element approximations and related optimal control problems. This part of the book is an update of the Signorini problem with nonlocal Coulomb friction, a problem little studied and with few results in the literature. Also, in the quasi-static case, a control problem governed by a bilateral contact problem is studied. Despite the theoretical nature of the presented results, the book provides a background for the numerical analysis of contact problems. The materials presented are accessible to both graduate/under graduate students and to researchers in applied mathematics, mechanics, and engineering. The obtained results have numerous applications in mechanics, engineering and geophysics. The book contains a good amount of original results which, in this unified form, cannot be found anywhere else.
This book presents the latest research findings and state-of-the-art solutions on optimization techniques and provides new research direction and developments. Both the theoretical and practical aspects of the book will be much beneficial to experts and students in optimization and operation research community. It selects high quality papers from The International Conference on Optimization: Techniques and Applications (ICOTA2013). The conference is an official conference series of POP (The Pacific Optimization Research Activity Group; there are over 500 active members). These state-of-the-art works in this book authored by recognized experts will make contributions to the development of optimization with its applications.