Download Free Nonparaxial Beam Propagation In Nonlinear Optical Medium Book in PDF and EPUB Free Download. You can read online Nonparaxial Beam Propagation In Nonlinear Optical Medium and write the review.

This book provides researchers at the forefront of nonlinear optical technologies with robust procedures and software for the systematic investigation of the fundamental phenomena in nonlinear optical waveguide structures. A full vectorial electromagnetic formulation is adopted and the conditions under which simplification to a scalar formulation is possible are clearly indicated. The need to model the dielectric saturation properly is identified, and improved algorithms are presented for obtaining the complete power dispersion curve of structures exhibiting bistability. As the stability analysis of nonlinear modes is crucial to the development of nonlinear model methods, an effective procedure to investigate the propagation of the scalar nonlinear waves in 3D is another important feature of the book. All of the procedures described, as well as an automatic mesh generator for the finite element method, are incorporated into a software package which is included with this book.
It is ironic that the ideas ofNewton, which described a beam of light as a stream ofparticles made it difficult for him to explain things like thin film interference. Yet these particles, called 'photons', have caused the adjective 'photonic' to gain common usage, when referring to optical phenomena. The purist might argue that only when we are confronted by the particle nature of light should we use the word photonics. Equally, the argument goes on, only when we are face-to face with an integrable system, i. e. one that possesses an infinite number of conserved quantities, should we say soliton rather than solitary wave. Scientists and engineers are pragmatic, however, and they are happy to use the word 'soliton' to describe what appears to be an excitation that is humped, multi humped, or localised long enough for some use to be made of it. The fact that such 'solitons' may stick to each other (fuse) upon collision is often something to celebrate for an application, rather than just evidence that, after all, these are not really solitons, in the classic sense. 'Soliton', therefore, is a widely used term with the qualification that we are constantly looking out for deviant behaviour that draws our attention to its solitary wave character. In the same spirit, 'photonics' is a useful generic cover-all noun, even when 'electromagnetic theory' or 'optics' would suffice.
The Vol.1 devoted to various topics of optics and optic instrumentation, and contains 17 chapters written by 36 experts in the field from 15 countries: Brazil, China, Denmark, France, Germany, India, Japan, Mexico, Russia, Turkey, Slovenia, South Korea, UK, Ukraine and USA. 'Advances in Optics: Reviews' Book Series is a comprehensive study of the field of optics, which provides readers with the most up-to-date coverage of optics, photonics and lasers with a good balance of practical and theoretical aspects. Directed towards both physicists and engineers this Book Series is also suitable for audiences focusing on applications of optics. A clear comprehensive presentation makes these books work well as both a teaching resources and a reference books. The book is intended for researchers and scientists in physics and optics, in academia and industry, as well as postgraduate students.
Caustics are natural phenomena, forming light patterns in rainbows or through drinking glasses, and creating light networks at the bottom of swimming pools. Only in recent years have scientists started to artificially create simple caustics with laser light. However, these realizations have already contributed to progress in advanced imaging, lithography, and micro-manipulation. In this book, Alessandro Zannotti pioneers caustics in many ways, establishing the field of artificial caustic optics. He employs caustic design to customize high-intensity laser light. This is of great relevance for laser-based machining, sensing, microscopy, and secure communication. The author also solves a long standing problem concerning the origin of rogue waves which appear naturally in the sea and can have disastrous consequences. By means of a far-reaching optical analogy, he identifies scattering of caustics in random media as the origin of rogue waves, and shows how nonlinear light-matter interaction increases their probability.
ÔAdvances in Optics: ReviewsÕ Book Series is a comprehensive study of the field of optics, which provides readers with the most up-to-date coverage of optics, photonics and lasers with a good balance of practical and theoretical aspects. Directed towards both physicists and engineers this Book Series is also suitable for audiences focusing on applications of optics. A clear comprehensive presentation makes these books work well as both a teaching resources and a reference books. The book is intended for researchers and scientists in physics and optics, in academia and industry, as well as postgraduate students. The Vol.1 is devoted to various topics of optics and optic instrumentation, and contains 17 chapters written by 36 experts in the field from 15 countries: Brazil, China, Denmark, France, Germany, India, Japan, Mexico, Russia, Turkey, Slovenia, South Korea, UK, Ukraine and USA.
The current research into solitons and their use in fiber optic communications is very important to the future of communications. Since the advent of computer networking and high speed data transmission technology people have been striving to develop faster and more reliable communications media. Optical pulses tend to broaden over relatively short distances due to dispersion, but solitons on the other hand are not as susceptible to the effects of dispersion, and although they are subject to losses due to attenuation they can be amplified without being received and re-transmitted.This book is the first to provide a thorough overview of optical solitons. The main purpose of this book is to present the rapidly developing field of Spatial Optical Solitons starting from the basic concepts of light self-focusing and self-trapping. It will introduce the fundamental concepts of the theory of nonlinear waves and solitons in non-integrated but physically realistic models of nonlinear optics including their stability and dynamics. Also, it will summarize a number of important experimental verification of the basic theoretical predictions and concepts covering the observation of self-focusing in the earlier days of nonlinear optics and the most recent experimental results on spatial solitons, vortex solitons, and soliton interaction & spiraling.* Introduces the fundamental concepts of the theory of nonlinear waves and solitons through realistic models * Material is based on authors' years of experience actively working in and researching the field* Summarizes the most important experimental verification of the basic theories, predictions and concepts of this ever evolving field from the earliest studies to the most recent
Disorder is everywhere, inherently present in nature, and is commonly believed to be a synonymous with disturbance. As a consequence, the methodical and customary study of the dynamics of the electromagnetic field, both in the linear and nonlinear optical regimes, leans to rule out it from the treatment. On the other hand, nonlinearity enriches the physical disciplines and brings them closer to reality with respect to the linear approximation. Nonlinearity allows to stimulate a wide and rich ensemble of optical responses that beautifies the role of matter in the active processes with electromagnetic fields. Independently of each other, both of these mechanisms foster localization of light. What happens when light enlightens their synergistic interaction? When pushed together, light, disorder and nonlinearity make new and intriguing phenomena emerge. This text provides a comprehensive investigation of the role of disorder in the nonlinear optical propagation both in transparent media and lasers. Eventually, disorder promotes and enhances complex nonlinear dynamics opening new perspectives in applied research driven by the processes of localization of the electromagnetic field. The first experimental study of laser emission in granular media unveils how randomness magnifies and largely affect laser-matter interactions. Viola Folli in her research work touches and deepens the leading milestones of the new science named Complex Photonics.
It is unanimously accepted that the quantum and the classical descriptions of the physical reality are very different, although any quantum process is "mysteriously" transformed through measurement into an observable classical event. Beyond the conceptual differences, quantum and classical physics have a lot in common. And, more important, there are classical and quantum phenomena that are similar although they occur in completely different contexts. For example, the Schrödinger equation has the same mathematical form as the Helmholtz equation, there is an uncertainty relation in optics very similar to that in quantum mechanics, and so on; the list of examples is very long. Quantum-classical analogies have been used in recent years to study many quantum laws or phenomena at the macroscopic scale, to design and simulate mesoscopic devices at the macroscopic scale, to implement quantum computer algorithms with classical means, etc. On the other hand, the new forms of light – localized light, frozen light – seem to have more in common with solid state physics than with classical optics. So these analogies are a valuable tool in the quest to understand quantum phenomena and in the search for new (quantum or classical) applications, especially in the area of quantum devices and computing.