Download Free Nonlinear Phenomena In Chemical Dynamics Book in PDF and EPUB Free Download. You can read online Nonlinear Phenomena In Chemical Dynamics and write the review.

An international conference. titled Nonlinear Phenomena in Chemical Dynamics was held in Bordeaux on September 7-11, 1981. The present volume contains the text of lectures and abstracts of posters presented during the meeting. This conference is part of a series of scientific multidisciplinary meetings in which chemistry is involved at various levels. Amongst the most recent ones let us mention Aachen 1979, Bielefeld 1979, New York 1979, Elmau 1981. In addition, this meeting is a direct extension of the first one that took place in Bordeaux in 1978 on the topic "Far from equilibrium: instabilities and structures," at the conclusions of which we could write (cf. Far fram Equilibrium, Springer Series in Synergetics, Vol. 3): "The three key words, far fram equilibriUm, instabilities and structuPes, best illustrate the new concepts which emerge from the description of the dynamics of various systems relevant to many different research areas. " The present proceedings show how much these remarks have remained true, even though substantial progress has been achieved during the three last years. To get a ,deeper experimental knowledge of open reacting systems, to model and simulate reaction-diffusion systems, to develop the mathematical theory of dynamical sys tems, these are the main direction~ in current investigations.
This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.
Just a few decades ago, chemical oscillations were thought to be exotic reactions of only theoretical interest. Now known to govern an array of physical and biological processes, including the regulation of the heart, these oscillations are being studied by a diverse group across the sciences. This book is the first introduction to nonlinear chemical dynamics written specifically for chemists. It covers oscillating reactions, chaos, and chemical pattern formation, and includes numerous practical suggestions on reactor design, data analysis, and computer simulations. Assuming only an undergraduate knowledge of chemistry, the book is an ideal starting point for research in the field. The book begins with a brief history of nonlinear chemical dynamics and a review of the basic mathematics and chemistry. The authors then provide an extensive overview of nonlinear dynamics, starting with the flow reactor and moving on to a detailed discussion of chemical oscillators. Throughout the authors emphasize the chemical mechanistic basis for self-organization. The overview is followed by a series of chapters on more advanced topics, including complex oscillations, biological systems, polymers, interactions between fields and waves, and Turing patterns. Underscoring the hands-on nature of the material, the book concludes with a series of classroom-tested demonstrations and experiments appropriate for an undergraduate laboratory.
Chemical Kinetics and Reaction Dynamics brings together the major facts and theories relating to the rates with which chemical reactions occur from both the macroscopic and microscopic point of view. This book helps the reader achieve a thorough understanding of the principles of chemical kinetics and includes: Detailed stereochemical discussions of reaction steps Classical theory based calculations of state-to-state rate constants A collection of matters on kinetics of various special reactions such as micellar catalysis, phase transfer catalysis, inhibition processes, oscillatory reactions, solid-state reactions, and polymerization reactions at a single source. The growth of the chemical industry greatly depends on the application of chemical kinetics, catalysts and catalytic processes. This volume is therefore an invaluable resource for all academics, industrial researchers and students interested in kinetics, molecular reaction dynamics, and the mechanisms of chemical reactions.
This second, extended and updated edition presents the current state of kinetics of chemical reactions, combining basic knowledge with results recently obtained at the frontier of science. Special attention is paid to the problem of the chemical reaction complexity with theoretical and methodological concepts illustrated throughout by numerous examples taken from heterogeneous catalysis combustion and enzyme processes. Of great interest to graduate students in both chemistry and chemical engineering.
Many chemical and biological processes take place in fluid environments in constant motion — chemical reactions in the atmosphere, biological population dynamics in the ocean, chemical reactors, combustion, and microfluidic devices. Applications of concepts from the field of nonlinear dynamical systems have led to significant progress over the last decade in the theoretical understanding of complex phenomena observed in such systems.This book introduces the theoretical approaches for describing mixing and transport in fluid flows. It reviews the basic concepts of dynamical phenomena arising from the nonlinear interactions in chemical and biological systems. The coverage includes a comprehensive overview of recent results on the effect of mixing on spatial structure and the dynamics of chemically and biologically active components in fluid flows, in particular oceanic plankton dynamics./a
Scientists in many fields are now expressing considerable interest in non-linearity and the ideas of oscillations and chaos. Chemical reactions provide perfect examples of these phenomena, as oscillating reactions, explosions, ignition, travelling waves, patterns, quasiperiodicity, and chaosare all features of chemical kinetics.Now available in paperback, this book introduces non-linear phenomena in chemical kinetics using simple model schemes. These models involve chemical feedback, such as chain branching, autocatalysis, and self-heating. The emphasis is on physical and pictorial representation, and on identifying thosegross features which are essential. The experimental conditions under which such behaviour will occur can be predicted using simple mathematical recipes, and these are also included.The first part of the book begins with a discussion of long-lived oscillations for autocatalytic or exothermic reactions in closed vessels. Stationary states, bistability, and oscillations in continuous flow reactors and diffusion cells are then considered. This is followed by chemical wavepropagation and by pattern selection and oscillations. Complex oscillations, quasiperiodicity, and chemical chaos, either forced or spontaneous, are introduced. Part 2 deals with real experimental systems, describing observed experimental behaviour and its interpretation in terms of the underlyingchemical mechanisms or simplified models. The Belousov-Zhabotinskii reactions is discussed in some detail as the most extensively studied system, and the behaviour of important gas phase reactions is presented.
The aim of this book is to develop a unified approach to nonlinear science, which does justice to its multiple facets and to the diversity and richness of the concepts and tools developed in this field over the years. Nonlinear science emerged in its present form following a series of closely related and decisive analytic, numerical and experimental developments that took place over the past three decades. It appeals to an extremely large variety of subject areas, but, at the same time, introduces into science a new way of thinking based on a subtle interplay between qualitative and quantitative techniques, topological and metric considerations and deterministic and statistical views. Special effort has been made throughout the book to illustrate both the development of the subject and the mathematical techniques, by reference to simple models. Each chapter concludes with a set of problems. This book will be of great value to graduate students in physics, applied mathematics, chemistry, engineering and biology taking courses in nonlinear science and its applications.
This monograph deals with the behavior of essentially nonlinear heterogeneous materials in processes occurring under intense dynamic loading, where microstructural effects play the main role. This book is not an introduction to the dynamic behavior of materials, and general information available in other books is not included. The material herein is presented in a form I hope will make it useful not only for researchers working in related areas, but also for graduate students. I used it successfully to teach a course on the dynamic behavior of materials at the University of California, San Diego. Another course well suited to the topic may be nonlinear wave dynamics in solids, especially the part on strongly nonlinear waves. About 100 problems presented in the book at the end of each chapter will help the reader to develop a deeper understanding of the subject. I tried to follow a few rules in writing this book: (1) To focus on strongly nonlinear phenomena where there is no small parameter with respect to the amplitude of disturbance, including solitons, shock waves, and localized shear. (2) To take into account phenomena sensitive to materials structure, where typical space scale of material parameters (particle size, cell size) are presented in the models or are variable in experimental research.
The dynamics of physical, chemical, biological, or fluid systems generally must be described by nonlinear models, whose detailed mathematical solutions are not obtainable. To understand some aspects of such dynamics, various complementary methods and viewpoints are of crucial importance. In this book the perspectives generated by analytical, topological and computational methods, and interplays between them, are developed in a variety of contexts. This book is a comprehensive introduction to this field, suited to a broad readership, and reflecting a wide range of applications. Some of the concepts considered are: topological equivalence; embeddings; dimensions and fractals; Poincaré maps and map-dynamics; empirical computational sciences vis-á-vis mathematics; Ulam's synergetics; Turing's instability and dissipative structures; chaos; dynamic entropies; Lorenz and Rossler models; predator-prey and replicator models; FPU and KAM phenomena; solitons and nonsolitons; coupled maps and pattern dynamics; cellular automata.