Download Free Nonlinear Oscillations In Physical Systems Book in PDF and EPUB Free Download. You can read online Nonlinear Oscillations In Physical Systems and write the review.

Many of today's most exciting questions in the physical and life sciences concern the behavior of nonlinear systems, especially the onset of chaotic behavior under deterministic conditions. Available for the first time in paperback, this book offers a fundamental explanation of nonlinear oscillations in physical systems. Originally intended for electrical engineers, this book remains an important reference for the increasing numbers of researchers studying nonlinear phenomena in physics, chemical engineering, biology, medicine, and other fields. All problems in mechanics are basically nonlinear from the outset, and the linearizations commonly practiced are approximating devices. Focusing attention on those features of problems where nonlinearity results in distinctive new phenomena, the author stresses the relationship between analysis and experiment.
A rich variety of books devoted to dynamical chaos, solitons, self-organization has appeared in recent years. These problems were all considered independently of one another. Therefore many of readers of these books do not suspect that the problems discussed are divisions of a great generalizing science - the theory of oscillations and waves. This science is not some branch of physics or mechanics, it is a science in its own right. It is in some sense a meta-science. In this respect the theory of oscillations and waves is closest to mathematics. In this book we call the reader's attention to the present-day theory of non-linear oscillations and waves. Oscillatory and wave processes in the systems of diversified physical natures, both periodic and chaotic, are considered from a unified poin t of view . The relation between the theory of oscillations and waves, non-linear dynamics and synergetics is discussed. One of the purposes of this book is to convince reader of the necessity of a thorough study popular branches of of the theory of oscillat ions and waves, and to show that such science as non-linear dynamics, synergetics, soliton theory, and so on, are, in fact , constituent parts of this theory. The primary audiences for this book are researchers having to do with oscillatory and wave processes, and both students and post-graduate students interested in a deep study of the general laws and applications of the theory of oscillations and waves.
An application of the techniques of dynamical systems and bifurcation theories to the study of nonlinear oscillations. Taking their cue from Poincare, the authors stress the geometrical and topological properties of solutions of differential equations and iterated maps. Numerous exercises, some of which require nontrivial algebraic manipulations and computer work, convey the important analytical underpinnings of problems in dynamical systems and help readers develop an intuitive feel for the properties involved.
By focusing on ordinary differential equations that contain a small parameter, this concise graduate-level introduction provides a unified approach for obtaining periodic solutions to nonautonomous and autonomous differential equations. 1963 edition.
This book offers a fundamental explanation of nonlinear oscillations in physical systems. Originally intended for electrical engineers, it remains an important reference for the increasing numbers of researchers studying nonlinear phenomena in physics, chemical engineering, biology, medicine, and other fields. Originally published in 1986. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Ein Überblick über die Methoden zu Studium der Existenz und Stabilität nichtlinearer Schwingungen. Dieses Lehrbuch präsentiert systematisch die Theorie von Bifurkationen für ein- und zweidimensionale dynamische Systeme, die die Grundlage dieser Methoden bildet.
A comprehensive text and reference for a first study of system dynamics and control, this volume emphasizes engineering concepts — modeling, dynamics feedback, and stability, for example — rather than mechanistic analysis procedures designed to yield routine answers to programmable problems. Its focus on physical modeling cultivates an appreciation for the breadth of dynamic systems without resorting to analogous electric-circuit formulation and analysis. After a careful treatment of the modeling of physical systems in several media and the derivation of the differential equations of motion, the text determines the physical behavior those equations connote: the free and forced motions of elementary systems and compound "systems of systems." Dynamic stability and natural behavior receive comprehensive linear treatment, and concluding chapters examine response to continuing and abrupt forcing inputs and present a fundamental treatment of analysis and synthesis of feedback control systems. This text's breadth is further realized through a series of examples and problems that develop physical insight in the best traditions of modern engineering and lead students into richer technical ground. As presented in this book, the concept of dynamics forms the basis for understanding not only physical devices, but also systems in such fields as management and transportation. Indeed, the fundamentals developed here constitute the common language of engineering, making this text applicable to a wide variety of undergraduate and graduate courses. 334 figures. 12 tables.
Many dynamical systems are described by differential equations that can be separated into one part, containing linear terms with constant coefficients, and a second part, relatively small compared with the first, containing nonlinear terms. Such a system is said to be weakly nonlinear. The small terms rendering the system nonlinear are referred to as perturbations. A weakly nonlinear system is called quasi-linear and is governed by quasi-linear differential equations. We will be interested in systems that reduce to harmonic oscillators in the absence of perturbations. This book is devoted primarily to applied asymptotic methods in nonlinear oscillations which are associated with the names of N. M. Krylov, N. N. Bogoli ubov and Yu. A. Mitropolskii. The advantages of the present methods are their simplicity, especially for computing higher approximations, and their applicability to a large class of quasi-linear problems. In this book, we confine ourselves basi cally to the scheme proposed by Krylov, Bogoliubov as stated in the monographs [6,211. We use these methods, and also develop and improve them for solving new problems and new classes of nonlinear differential equations. Although these methods have many applications in Mechanics, Physics and Technique, we will illustrate them only with examples which clearly show their strength and which are themselves of great interest. A certain amount of more advanced material has also been included, making the book suitable for a senior elective or a beginning graduate course on nonlinear oscillations.
The book introduces possibly the most compact, simple and physically understandable tool that can describe, explain, predict and design the widest set of phenomena in time-variant and nonlinear oscillations. The phenomena described include parametric resonances, combined resonances, instability of forced oscillations, synchronization, distributed parameter oscillation and flatter, parametric oscillation control, robustness of oscillations and many others. Although the realm of nonlinear oscillations is enormous, the book relies on the concept of minimum knowledge for maximum understanding. This unique tool is the method of stationarization, or one frequency approximation of parametric resonance problem analysis in linear time-variant dynamic systems. The book shows how this can explain periodic motion stability in stationary nonlinear dynamic systems, and reveals the link between the harmonic stationarization coefficients and describing functions. As such, the book speaks the language of control: transfer functions, frequency response, Nyquist plot, stability margins, etc. An understanding of the physics of stability loss is the basis for the design of new oscillation control methods for, several of which are presented in the book. These and all the other findings are illustrated by numerical examples, which can be easily reproduced by readers equipped with a basic simulation package like MATLAB with Simulink. The book offers a simple tool for all those travelling through the world of oscillations, helping them discover its hidden beauty. Researchers can use the method to uncover unknown aspects, and as a reference to compare it with other, for example, abstract mathematical means. Further, it provides engineers with a minimalistic but powerful instrument based on physically measurable variables to analyze and design oscillatory systems.