Download Free Nonlinear Hyperbolic Equations Spectral Theory And Wavelet Transformations Book in PDF and EPUB Free Download. You can read online Nonlinear Hyperbolic Equations Spectral Theory And Wavelet Transformations and write the review.

This volume focuses on recent developments in non-linear and hyperbolic equations. It will be a most valuable resource for researchers in applied mathematics, the theory of wavelets, and in mathematical and theoretical physics. Nine up-to-date contributions have been written on invitation by experts in the respective fields. The book is the third volume of the subseries "Advances in Partial Differential Equations".
The research topic for this IAS/PCMS Summer Session was nonlinear wave phenomena. Mathematicians from the more theoretical areas of PDEs were brought together with those involved in applications. The goal was to share ideas, knowledge, and perspectives. How waves, or "frequencies", interact in nonlinear phenomena has been a central issue in many of the recent developments in pure and applied analysis. It is believed that wavelet theory--with its simultaneous localization in both physical and frequency space and its lacunarity--is and will be a fundamental new tool in the treatment of the phenomena. Included in this volume are write-ups of the "general methods and tools" courses held by Jeff Rauch and Ingrid Daubechies. Rauch's article discusses geometric optics as an asymptotic limit of high-frequency phenomena. He shows how nonlinear effects are reflected in the asymptotic theory. In the article "Harmonic Analysis, Wavelets and Applications" by Daubechies and Gilbert the main structure of the wavelet theory is presented. Also included are articles on the more "specialized" courses that were presented, such as "Nonlinear Schrödinger Equations" by Jean Bourgain and "Waves and Transport" by George Papanicolaou and Leonid Ryzhik. Susan Friedlander provides a written version of her lecture series "Stability and Instability of an Ideal Fluid", given at the Mentoring Program for Women in Mathematics, a preliminary program to the Summer Session. This Summer Session brought together students, fellows, and established mathematicians from all over the globe to share ideas in a vibrant and exciting atmosphere. This book presents the compelling results. Members of the Mathematical Association of America (MAA) and the National Council of Teachers of Mathematics (NCTM) receive a 20% discount from list price.
This book contains a selection of carefully refereed research papers, most of which were presented at the fourteenth International Workshop on Operator Theory and its Applications (IWOTA), held at Cagliari, Italy, from June 24-27, 2003. The papers, many of which have been written by leading experts in the field, concern a wide variety of topics in modern operator theory and applications, with emphasis on differential operators and numerical methods. The book will be of interest to a wide audience of pure and applied mathematicians and engineers.
The state space method developed in the last decades allows us to study the theory of linear systems by using tools from the theory of linear operators; conversely, it had a strong influence on operator theory introducing new questions and topics. The present volume contains a collection of essays representing some of the recent advances in the state space method. Methods covered include noncommutative systems theory, new aspects of the theory of discrete systems, discrete analogs of canonical systems, and new applications to the theory of Bezoutiants and convolution equations. The articles in the volume will be of interest to pure and applied mathematicians, electrical engineers and theoretical physicists.
This volume is devoted to the life and work of the applied mathematician Professor Erhard Meister (1930-2001). He was a member of the editorial boards of this book series Operator The ory: Advances and Applications as well as of the journal Integral Equations and Operator Theory, both published by Birkhauser (now part of Springer-Verlag). Moreover he played a decisive role in the foundation of these two series by helping to establish contacts between Birkhauser and the founder and present chief editor of this book series after his emigration from Moldavia in 1974. The volume is divided into two parts. Part A contains reminiscences about the life of E. Meister including a short biography and an exposition of his professional work. Part B displays the wide range of his scientific interests through eighteen original papers contributed by authors with close scientific and personal relations to E. Meister. We hope that a great part of the numerous features of his life and work can be re-discovered from this book.
A comprehensive graduate textbook that introduces functional analysis with an emphasis on the theory of linear operators and its application to differential equations, integral equations, infinite systems of linear equations, approximation theory, and numerical analysis. As a textbook designed for senior undergraduate and graduate students, it begins with the geometry of Hilbert spaces and proceeds to the theory of linear operators on these spaces including Banach spaces. Presented as a natural continuation of linear algebra, the book provides a firm foundation in operator theory which is an essential part of mathematical training for students of mathematics, engineering, and other technical sciences.
This book presents recent results in the following areas: spectral analysis of one-dimensional Schrödinger and Jacobi operators, discrete WKB analysis of solutions of second order difference equations, and applications of functional models of non-selfadjoint operators. Several developments treated appear for the first time in a book. It is addressed to a wide group of specialists working in operator theory or mathematical physics.
This volume provides an in-depth treatment of several equations and systems of mathematical physics, describing the propagation and interaction of nonlinear waves as different modifications of these: the KdV equation, Fornberg-Whitham equation, Vakhnenko equation, Camassa-Holm equation, several versions of the NLS equation, Kaup-Kupershmidt equation, Boussinesq paradigm, and Manakov system, amongst others, as well as symmetrizable quasilinear hyperbolic systems arising in fluid dynamics.Readers not familiar with the complicated methods used in the theory of the equations of mathematical physics (functional analysis, harmonic analysis, spectral theory, topological methods, a priori estimates, conservation laws) can easily be acquainted here with different solutions of some nonlinear PDEs written in a sharp form (waves), with their geometrical visualization and their interpretation. In many cases, explicit solutions (waves) having specific physical interpretation (solitons, kinks, peakons, ovals, loops, rogue waves) are found and their interactions are studied and geometrically visualized. To do this, classical methods coming from the theory of ordinary differential equations, the dressing method, Hirota's direct method and the method of the simplest equation are introduced and applied. At the end, the paradifferential approach is used.This volume is self-contained and equipped with simple proofs. It contains many exercises and examples arising from the applications in mechanics, physics, optics and, quantum mechanics.
This book is devoted to new classes of parabolic differential and pseudo-differential equations extensively studied in the last decades, such as parabolic systems of a quasi-homogeneous structure, degenerate equations of the Kolmogorov type, pseudo-differential parabolic equations, and fractional diffusion equations. It will appeal to mathematicians interested in new classes of partial differential equations, and physicists specializing in diffusion processes.