Download Free Nonlinear Dynamical Systems And Carleman Linearization Book in PDF and EPUB Free Download. You can read online Nonlinear Dynamical Systems And Carleman Linearization and write the review.

The Carleman linearization has become a new powerful tool in the study of nonlinear dynamical systems. Nevertheless, there is the general lack of familiarity with the Carleman embedding technique among those working in the field of nonlinear models. This book provides a systematic presentation of the Carleman linearization, its generalizations and applications. It also includes a review of existing alternative methods for linearization of nonlinear dynamical systems. There are probably no books covering such a wide spectrum of linearization algorithms. This book also gives a comprehensive introduction to the Kronecker product of matrices, whereas most books deal with it only superficially. The Kronecker product of matrices plays an important role in mathematics and in applications found in theoretical physics.
This self-contained treatment covers all aspects of nonlinear dynamics, from fundamentals to recent developments, in a unified and comprehensive way. Numerous examples and exercises will help the student to assimilate and apply the techniques presented.
Linear, Time-varying Approximations to Nonlinear Dynamical Systems introduces a new technique for analysing and controlling nonlinear systems. This method is general and requires only very mild conditions on the system nonlinearities, setting it apart from other techniques such as those – well-known – based on differential geometry. The authors cover many aspects of nonlinear systems including stability theory, control design and extensions to distributed parameter systems. Many of the classical and modern control design methods which can be applied to linear, time-varying systems can be extended to nonlinear systems by this technique. The implementation of the control is therefore simple and can be done with well-established classical methods. Many aspects of nonlinear systems, such as spectral theory which is important for the generalisation of frequency domain methods, can be approached by this method.
This book is the first monograph on a new powerful method discovered by the author for the study of nonlinear dynamical systems relying on reduction of nonlinear differential equations to the linear abstract Schrödinger-like equation in Hilbert space. Besides the possibility of unification of many apparently completely different techniques, the “quantal” Hilbert space formalism introduced enables new original methods to be discovered for solving nonlinear problems arising in investigation of ordinary and partial differential equations as well as difference equations. Applications covered in the book include symmetries and first integrals, linearization transformations, Bäcklund transformations, stroboscopic maps, functional equations involving the case of Feigenbaum-Cvitanovic renormalization equations and chaos.
Nonlinear Dynamics: A Two-Way Trip from Physics to Math provides readers with the mathematical tools of nonlinear dynamics to tackle problems in all areas of physics. The selection of topics emphasizes bifurcation theory and topological analysis of dynamical systems. The book includes real-life problems and experiments as well as exercises and work
The book reviews a large number of 1- and 2-dimensional equations that describe nonlinear phenomena in various areas of modern theoretical and mathematical physics. It is meant, above all, for physicists who specialize in the field theory and physics of elementary particles and plasma, for mathe maticians dealing with nonlinear differential equations, differential geometry, and algebra, and the theory of Lie algebras and groups and their representa tions, and for students and post-graduates in these fields. We hope that the book will be useful also for experts in hydrodynamics, solid-state physics, nonlinear optics electrophysics, biophysics and physics of the Earth. The first two chapters of the book present some results from the repre sentation theory of Lie groups and Lie algebras and their counterpart on supermanifolds in a form convenient in what follows. They are addressed to those who are interested in integrable systems but have a scanty vocabulary in the language of representation theory. The experts may refer to the first two chapters only occasionally. As we wanted to give the reader an opportunity not only to come to grips with the problem on the ideological level but also to integrate her or his own concrete nonlinear equations without reference to the literature, we had to expose in a self-contained way the appropriate parts of the representation theory from a particular point of view.
The dynamics of physical, chemical, biological or fluid systems generally must be described by nonlinear models, whose detailed mathematical solutions are not obtainable. To understand some aspects of such dynamics, various complementary methods and viewpoints are of crucial importance. The presentation and style is intended to stimulate the reader's imagination to apply these methods to a host of problems and situations.
For most cases of interest, exact solutions to nonlinear equations describing stochastic dynamical systems are not available. This book details the relatively simple and popular linearization techniques available, covering theory as well as application. It examines models with continuous external and parametric excitations, those that cover the majority of known approaches.
In this book we have developed the asymptotic analysis of nonlinear dynamical systems. We have collected a large number of results, scattered throughout the literature and presented them in a way to illustrate both the underlying common theme, as well as the diversity of problems and solutions. While most of the results are known in the literature, we added new material which we hope will also be of interest to the specialists in this field. The basic theory is discussed in chapters two and three. Improved results are obtained in chapter four in the case of stable limit sets. In chapter five we treat averaging over several angles; here the theory is less standardized, and even in our simplified approach we encounter many open problems. Chapter six deals with the definition of normal form. After making the somewhat philosophical point as to what the right definition should look like, we derive the second order normal form in the Hamiltonian case, using the classical method of generating functions. In chapter seven we treat Hamiltonian systems. The resonances in two degrees of freedom are almost completely analyzed, while we give a survey of results obtained for three degrees of freedom systems. The appendices contain a mix of elementary results, expansions on the theory and research problems.