Download Free Nonlinear Control And Filtering Using Differential Flatness Approaches Book in PDF and EPUB Free Download. You can read online Nonlinear Control And Filtering Using Differential Flatness Approaches and write the review.

This monograph presents recent advances in differential flatness theory and analyzes its use for nonlinear control and estimation. It shows how differential flatness theory can provide solutions to complicated control problems, such as those appearing in highly nonlinear multivariable systems and distributed-parameter systems. Furthermore, it shows that differential flatness theory makes it possible to perform filtering and state estimation for a wide class of nonlinear dynamical systems and provides several descriptive test cases. The book focuses on the design of nonlinear adaptive controllers and nonlinear filters, using exact linearization based on differential flatness theory. The adaptive controllers obtained can be applied to a wide class of nonlinear systems with unknown dynamics, and assure reliable functioning of the control loop under uncertainty and varying operating conditions. The filters obtained outperform other nonlinear filters in terms of accuracy of estimation and computation speed. The book presents a series of application examples to confirm the efficiency of the proposed nonlinear filtering and adaptive control schemes for various electromechanical systems. These include: · industrial robots; · mobile robots and autonomous vehicles; · electric power generation; · electric motors and actuators; · power electronics; · internal combustion engines; · distributed-parameter systems; and · communication systems. Differential Flatness Approaches to Nonlinear Control and Filtering will be a useful reference for academic researchers studying advanced problems in nonlinear control and nonlinear dynamics, and for engineers working on control applications in electromechanical systems.
This monograph presents recent advances in differential flatness theory and analyzes its use for nonlinear control and estimation. It shows how differential flatness theory can provide solutions to complicated control problems, such as those appearing in highly nonlinear multivariable systems and distributed-parameter systems. Furthermore, it shows that differential flatness theory makes it possible to perform filtering and state estimation for a wide class of nonlinear dynamical systems and provides several descriptive test cases. The book focuses on the design of nonlinear adaptive controllers and nonlinear filters, using exact linearization based on differential flatness theory. The adaptive controllers obtained can be applied to a wide class of nonlinear systems with unknown dynamics, and assure reliable functioning of the control loop under uncertainty and varying operating conditions. The filters obtained outperform other nonlinear filters in terms of accuracy of estimation and computation speed. The book presents a series of application examples to confirm the efficiency of the proposed nonlinear filtering and adaptive control schemes for various electromechanical systems. These include: · industrial robots; · mobile robots and autonomous vehicles; · electric power generation; · electric motors and actuators; · power electronics; · internal combustion engines; · distributed-parameter systems; and · communication systems. Differential Flatness Approaches to Nonlinear Control and Filtering will be a useful reference for academic researchers studying advanced problems in nonlinear control and nonlinear dynamics, and for engineers working on control applications in electromechanical systems.
The book conclusively solves problems associated with the control and estimation of nonlinear and chaotic dynamics in financial systems when these are described in the form of nonlinear ordinary differential equations. It then addresses problems associated with the control and estimation of financial systems governed by partial differential equations (e.g. the Black–Scholes partial differential equation (PDE) and its variants). Lastly it an offers optimal solution to the problem of statistical validation of computational models and tools used to support financial engineers in decision making. The application of state-space models in financial engineering means that the heuristics and empirical methods currently in use in decision-making procedures for finance can be eliminated. It also allows methods of fault-free performance and optimality in the management of assets and capitals and methods assuring stability in the functioning of financial systems to be established. Covering the following key areas of financial engineering: (i) control and stabilization of financial systems dynamics, (ii) state estimation and forecasting, and (iii) statistical validation of decision-making tools, the book can be used for teaching undergraduate or postgraduate courses in financial engineering. It is also a useful resource for the engineering and computer science community
This monograph addresses problems of: • nonlinear control, estimation and filtering for robotic manipulators (multi-degree-of freedom rigid-link robots, flexible-link robots, underactuated, redundant and cooperating manipulators and closed-chain robotic mechanisms); and• nonlinear control, estimation and filtering for autonomous robotic vehicles operating on the ground, in the air, and on and under water, independently and in cooperating groups. The book is a thorough treatment of the entire range of applications of robotic manipulators and autonomous vehicles. The nonlinear control and estimation methods it develops can be used generically, being suitable for a wide range of robotic systems. Such methods can improve robustness, precision and fault-tolerance in robotic manipulators and vehicles at the same time as enabling the reliable functioning of these systems under variable conditions, model uncertainty and external perturbations.
In recent years, our world has experienced a profound shift and progression in available computing and knowledge sharing innovations. These emerging advancements have developed at a rapid pace, disseminating into and affecting numerous aspects of contemporary society. This has created a pivotal need for an innovative compendium encompassing the latest trends, concepts, and issues surrounding this relevant discipline area. During the past 15 years, the Encyclopedia of Information Science and Technology has become recognized as one of the landmark sources of the latest knowledge and discoveries in this discipline. The Encyclopedia of Information Science and Technology, Fourth Edition is a 10-volume set which includes 705 original and previously unpublished research articles covering a full range of perspectives, applications, and techniques contributed by thousands of experts and researchers from around the globe. This authoritative encyclopedia is an all-encompassing, well-established reference source that is ideally designed to disseminate the most forward-thinking and diverse research findings. With critical perspectives on the impact of information science management and new technologies in modern settings, including but not limited to computer science, education, healthcare, government, engineering, business, and natural and physical sciences, it is a pivotal and relevant source of knowledge that will benefit every professional within the field of information science and technology and is an invaluable addition to every academic and corporate library.
Focused on renewable energy systems and the development of information and communication technologies (ICTs) for their integration in smart grids, this book presents recent advances and methods that help to ensure that power generation from renewable sources remains stable, that power losses are minimized, and that the reliable functioning of these power generation units is maintained. The book highlights key topics and technologies for renewable energy systems including the intelligent control of power generators, power electronics that connect renewable power generation units to the grid, and fault diagnosis for power generators and power electronics. In particular, the following topics are addressed: • Modeling and control of power generators (PMSGs, DFIGs); • Modeling and control of power electronics (converters, inverters); • Modeling and fault diagnosis of the transmission and distribution Grid; and • Modelling and control of distributed power generation units (interconnected synchronous generators or photovoltaic units). Because of the above coverage, members of the wider engineering community will find that the nonlinear control and estimation methods presented provide essential insights into the functioning of renewable energy power systems, while the academic community will find the book a valuable textbook for undergraduate or graduate courses on renewable energy systems.
This volume discusses advances in applied nonlinear optimal control, comprising both theoretical analysis of the developed control methods and case studies about their use in robotics, mechatronics, electric power generation, power electronics, micro-electronics, biological systems, biomedical systems, financial systems and industrial production processes. The advantages of the nonlinear optimal control approaches which are developed here are that, by applying approximate linearization of the controlled systems’ state-space description, one can avoid the elaborated state variables transformations (diffeomorphisms) which are required by global linearization-based control methods. The book also applies the control input directly to the power unit of the controlled systems and not on an equivalent linearized description, thus avoiding the inverse transformations met in global linearization-based control methods and the potential appearance of singularity problems. The method adopted here also retains the known advantages of optimal control, that is, the best trade-off between accurate tracking of reference setpoints and moderate variations of the control inputs. The book’s findings on nonlinear optimal control are a substantial contribution to the areas of nonlinear control and complex dynamical systems, and will find use in several research and engineering disciplines and in practical applications.
Businesses consistently work on new projects, products, and workflows to remain competitive and successful in the modern business environment. To remain zealous, businesses must employ the most effective methods and tools in human resources, project management, and overall business plan execution as competitors work to succeed as well. Advanced Methodologies and Technologies in Business Operations and Management provides emerging research on business tools such as employee engagement, payout policies, and financial investing to promote operational success. While highlighting the challenges facing modern organizations, readers will learn how corporate social responsibility and utilizing artificial intelligence improve a company’s culture and management. This book is an ideal resource for executives and managers, researchers, accountants, and financial investors seeking current research on business operations and management.
The field of mechatronics integrates modern engineering science and technologies with new ways of thinking, enhancing the design of products and manufacturing processes. This synergy enables the creation and evolution of new intelligent human-oriented machines. The Handbook of Research on Advancements in Robotics and Mechatronics presents new findings, practices, technological innovations, and theoretical perspectives on the the latest advancements in the field of mechanical engineering. This book is of great use to engineers and scientists, students, researchers, and practitioners looking to develop autonomous and smart products and systems for meeting today’s challenges.
The book presents recent applications and developments in the field of control of industrial systems, covering a wide range of modeling and feedback control using various robust approaches such as fuzzy systems, sliding mode control, and H-infinity. This book provides insights into theory, applications, and perspectives relevant to the field of robotic systems, exoskeletons, power systems, photovoltaic systems, etc., as well as general methodologies and paradigms around them. Each chapter provides an enriched understanding of a research topic along with a balanced treatment of the relevant theories, methods, or applications. It reports on the latest advances in the field. This book is a good reference for graduate students, researchers, educators, engineers, and scientists and contains a total of 15 chapters divided into five parts as follows. The first part of this book focuses on the application of fuzzy control to robotic systems and consists of three chapters. The second part of this book proposes the control of lower and upper limb exoskeletons and includes two chapters. The third part is dedicated to the control of power systems and comprises three chapters. The fourth part deals with various approaches to the modeling and control of industrial processes and comprises four chapters. The fifth and final part describes observers and fault-tolerant control systems and comprises five chapters.