Download Free Nonholonomic Manipulators Book in PDF and EPUB Free Download. You can read online Nonholonomic Manipulators and write the review.

This focused monograph builds upon an increasing interest in nonholonomic mechanical systems in robotics and control engineering. It covers the definition and development of new nonholonomic machines designed on the basis of nonlinear control theory for nonholonomic mechanical systems.
This book presents recent results in robot motion and control. Twenty papers presented at the Fourth International Workshop on Robot Motion and Control held in 2004 have been expanded. The authors of these papers were carefully selected and represent leading institutions in this field. The book covers nonlinear control of nonholonomic systems and legged robots as well as trajectory planning for these systems, topics not covered in previous books.
This book investigates in detail cutting-edge technologies of underactuated manipulator control, which is a frontier topic in robotics that possesses great significance in energy conservation as well as fault tolerance for industrial applications. It is also the crucial technology associated with systems in special environments, including underwater or aerospace environments. So far, the topic of underactuated manipulator control has attracted engineers and scientists from various disciplines, such as applied physics, material, automation and robotics. Pursuing a holistic approach, the book establishes a fundamental framework for this topic, while emphasizing the importance of design and optimization in the control of underactuated manipulators. Chapters of the book cover a wide variety of manipulator systems, including vertical underactuated manipulator, planar underactuated manipulator with first-order nonholonomic constraint, planar underactuated manipulator with second-order nonholonomic constraint and flexible underactuated manipulator. The book is intended for undergraduate and graduate students that are interested in underactuated manipulators, researchers that investigate the design and optimization for controllers of underactuated manipulators and engineers working with underactuated systems.
A modern and unified treatment of the mechanics, planning, and control of robots, suitable for a first course in robotics.
The aim of this publication is to present the research results in robotics that are now state-of-the-art, and indicate the possible future lines of development. To effectively work and cooperate with us, robots must exhibit abilities that are comparable to those of humans. The book describes the ongoing efforts to design and develop human-friendly robotic systems that can safely and effectively interact and work with humans.
Three main disciplines in the area of multibody systems are covered: kinematics, dynamics, and control, as pertaining to systems that can be modelled as coupling or rigid bodies. The treatment is intended to give a state of the art of the topics discussed.
This book presents the proceedings of the 6th International Symposium on Experimental Robotics held in Sydney in March 1999. The editors and contributors represent the leading robotics research efforts from around the world. Micro-machines, interplanetary exploration, minimally invasive surgery and emerging humanoid robots are among the most obvious attainments of leading robotics research teams reported in this volume. Less obvious but equally significant are the fundamental advances in robot map-building and methods of communication between humans and machines that are demonstrated through experimental results. This collection of papers will provide the reader with a concise report on the current achievements and future trends in robotics research across the world.
There have been major recent advances in robotic systems that can replace humans in undertaking hazardous activities in demanding or dangerous environments. Published in association with the CLAWAR (Climbing and Walking Robots and Associated Technologies Association) (www.clawar.org), this important book reviews the development of robotic systems for de-mining and other risky activities such as fire-fighting.Part one provides an overview of the use of robots for humanitarian de-mining work. Part two discusses the development of sensors for mine detection whilst Part thee reviews developments in both teleoperated and autonomous robots. Building on the latter, Part four concentrates on robot autonomous navigation. The final part of the book reviews research on multi-agent-systems (MAS) and the multi-robotics-systems (MRS), promising tools that take into account modular design of mobile robots and the use of several robots in multi-task missions.With its distinguished editors and international team of contributors, Using robots in hazardous environments: landmine detection, de-mining and other applications is a standard reference for all those researching the use of robots in hazardous environments as well as government and other agencies wishing to use robots for dangerous tasks such as landmine detection and disposal. - Reviews the development of robotic systems for de-mining and other risky activities - Discusses the development and applications of sensors for mine detection using different robotic systems - Examines research on multi-agent-systems and multi-robotics systems
Modern robotics dates from the late 1960s, when progress in the development of microprocessors made possible the computer control of a multiaxial manipulator. Since then, robotics has evolved to connect with many branches of science and engineering, and to encompass such diverse fields as computer vision, artificial intelligence, and speech recognition. This book deals with robots - such as remote manipulators, multifingered hands, walking machines, flight simulators, and machine tools - that rely on mechanical systems to perform their tasks. It aims to establish the foundations on which the design, control and implementation of the underlying mechanical systems are based. The treatment assumes familiarity with some calculus, linear algebra, and elementary mechanics; however, the elements of rigid-body mechanics and of linear transformations are reviewed in the first chapters, making the presentation self-contained. An extensive set of exercises is included. Topics covered include: kinematics and dynamics of serial manipulators with decoupled architectures; trajectory planning; determination of the angular velocity and angular acceleration of a rigid body from point data; inverse and direct kinematics manipulators; dynamics of general parallel manipulators of the platform type; and the kinematics and dynamics of rolling robots. Since the publication of the previous edition there have been numerous advances in both the applications of robotics (including in laprascopy, haptics, manufacturing, and most notably space exploration) as well as in the theoretical aspects (for example, the proof that Husty's 40th-degree polynomial is indeed minimal - mentioned as an open question in the previous edition).
The International Conference on Mechanical Design and Production has over the years established itself as an excellent forum for the exchange of ideas in these established fields. The first of these conferences was held in 1979. The seventh, and most recent, conference in the series was held in Cairo during February 15-17, 2000. International engineers and scientists gathered to exchange experiences and highlight the state-of-the-art research in the fields of mechanical design and production. In addition a heavy emphasis was placed on the issue of technology transfer. Over 100 papers were accepted for presentation at the conference. Current Advances in Mechanical Design & Production VII does not, however, attempt to publish the complete work presented but instead offers a sample that represents the quality and breadth of both the work and the conference. Ten invited papers and 54 ordinary papers have been selected for inclusion in these proceedings. They cover a range of basic and applied topics that can be classified into six main categories: System Dynamics, Solid Mechanics, Material Science, Manufacturing Processes, Design and Tribology, and Industrial Engineering and its Applications.