Download Free Nonequilibrium Magnons Book in PDF and EPUB Free Download. You can read online Nonequilibrium Magnons and write the review.

This much-needed book addresses the concepts, models, experiments and applications of magnons and spin wave in magnetic devices. It fills the gap in the current literature by providing the theoretical and technological framework needed to develop innovative magnetic devices, such as recording devices and sensors. Starting with a historical review of developments in the magnon concept, and including original experimental results, the author presents methods of magnon excitation, and several basic models to describe magnon gas. He includes experiments on Bose-Einstein condensation of non-equilibrium magnons, as well as various applications of a magnon approach.
This volume of Solid State Physics provides a broad review on recent advances in the field of magnetic insulators, ranging from new spin effects to thin film growth and high-frequency applications. It covers both theoretical and experimental progress. The topics include the use of magnetic insulators to produce and transfer spin currents, the excitation of spin waves in magnetic insulators by spin transfer torque, interplay between the spin and heat transports in magnetic insulator/normal metal heterostructures, nonlinear spin waves in thin films, development of high-quality nanometer thick films, and applications of magnetic insulators in rf, microwave, and terahertz devices, among others. The volume not only presents introductions and tutorials for those just entering the field, but also provides comprehensive yet timely summaries to specialists in the field. Solid-state physics is the branch of physics primarily devoted to the study of matter in its solid phase, especially at the atomic level. This prestigious series presents timely and state-of-the-art reviews pertaining to all aspects of solid-state physics. - Contributions from leading authorities - Informs and updates on all the latest developments in the field
Fundamentals of Magnonics is a textbook for beginning graduate students in the areas of magnetism and spintronics. The level of presentation assumes only basic knowledge of the origin of magnetism and electromagnetism, and quantum mechanics. The book utilizes elementary mathematical derivations, aimed mainly at explaining the physical concepts involved in the phenomena studied and enabling a deeper understanding of the experiments presented. Key topics include the basic phenomena of ferromagnetic resonance in bulk materials and thin films, semi-classical theory of spin waves, quantum theory of spin waves and magnons, magnons in antiferromagnets, parametric excitation of magnons, nonlinear and chaotic phenomena, Bose-Einstein condensation of magnons, and magnon spintronics. Featuring end-of-chapter problem sets accompanied by extensive contemporary and historical references, this book provides the essential tools for any graduate or advanced undergraduate-level course of studies on the emerging field of magnonics.
Following an explosion of research on Bose–Einstein condensation (BEC) ignited by demonstration of the effect by 2001 Nobel prize winners Cornell, Wieman and Ketterle, this book surveys the field of BEC studies. Written by experts in the field, it focuses on Bose–Einstein condensation as a universal phenomenon, covering topics such as cold atoms, magnetic and optical condensates in solids, liquid helium and field theory. Summarising general theoretical concepts and the research to date - including novel experimental realisations in previously inaccessible systems and their theoretical interpretation - it is an excellent resource for researchers and students in theoretical and experimental physics who wish to learn of the general themes of BEC in different subfields.
Spintronics (short for spin electronics, or spin transport electronics) exploits both the intrinsic spin of the electron and its associated magnetic moment, in addition to its fundamental electronic charge, in solid-state devices. Controlling the spin of electrons within a device can produce surprising and substantial changes in its properties. Drawing from many cutting edge fields, including physics, materials science, and electronics device technology, spintronics has provided the key concepts for many next generation information processing and transmitting technologies. This book discusses all aspects of spintronics from basic science to applications and covers: • magnetic semiconductors • topological insulators • spin current science • spin caloritronics • ultrafast magnetization reversal • magneto-resistance effects and devices • spin transistors • quantum information devices This book provides a comprehensive introduction to Spintronics for researchers and students in academia and industry.
The arrival of the 'information age' took most people by surprise - including scientists and technologists. Today, research on better, smaller, and faster ways to store and transfer information continues to grow, and growing fast within this scope is the field of magnetoelectronics. With its possibilities as a magnetic storage technology capable of overcoming the vulnerabilities of CMOS (complementary metal on oxide semiconductor), magnetoelectronics promises to be an important installation in the information era.
The arrival of the 'information age' took most people by surprise – including scientists and technologists. Today, research on better, smaller, and faster ways to store and transfer information continues to grow, and growing fast within this scope is the field of magnetoelectronics. With its possibilities as a magnetic storage technology capable of overcoming the vulnerabilities of CMOS (complementary metal on oxide semiconductor), magnetoelectronics promises to be an important installation in the information era.
The present issue, Volume 2 of "Boron Compounds" 4th Supplement of the Gmelin Hand book, updates the previous issues by reporting the literature on boron-oxygen systems published up to 1988. For some important recent developments literature is covered through mid-1992; this concerns, for example, the compounds ~-Ba3[B306h and U[B305J which became of interest as materials with nonlinear optical properties. The volume directly com plements the earlier "Boron Compounds" 3rd Supplement Volume 2. In the original literature, alternative formulations are frequently used for the same com pound. This is especially true for many borates. Often, these species are neither completely heteropolar nor covalent, and an experimentally based decision has not been made. Hence, the use of brackets does not necessarily reflect a truly salt-like character. Volume 1 (systems with hydrogen and noble gases) of this particular supplement will be published subsequently, whereas Volume 3a (boron and nitrogen), Volume 3b (boron and nitrogen, boron and fluorine), and Volume 4 (boron compounds containing Cl, Br, I, S, Se, and Te, as well as a section containing carboranes) have already been published. All volumes of the 4th supplement will be augmented by a formula index. The IUPAC nomenclature is generally adhered to; thf means tetrahydrofuran; and occa sionally additional abbreviations for compounds are explained in the text. Positive signs for chemical shifts of the NMR signals indicates downfield shifts from the references, usually internal (CH3)4Si for olH and 013C with others being specified.
Issues in General Physics Research / 2013 Edition is a ScholarlyEditions™ book that delivers timely, authoritative, and comprehensive information about Quantum Physics. The editors have built Issues in General Physics Research: 2013 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Quantum Physics in this book to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in General Physics Research: 2013 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.