Download Free Noisy Information And Computational Complexity Book in PDF and EPUB Free Download. You can read online Noisy Information And Computational Complexity and write the review.

In this volume, which was originally published in 1996, noisy information is studied in the context of computational complexity; in other words the text deals with the computational complexity of mathematical problems for which information is partial, noisy and priced.
The twin themes of computational complexity and information pervade this 1998 book. It starts with an introduction to the computational complexity of continuous mathematical models, that is, information-based complexity. This is then used to illustrate a variety of topics, including breaking the curse of dimensionality, complexity of path integration, solvability of ill-posed problems, the value of information in computation, assigning values to mathematical hypotheses, and new, improved methods for mathematical finance. The style is informal, and the goals are exposition, insight and motivation. A comprehensive bibliography is provided, to which readers are referred for precise statements of results and their proofs. As the first introductory book on the subject it will be invaluable as a guide to the area for the many students and researchers whose disciplines, ranging from physics to finance, are influenced by the computational complexity of continuous problems.
Examines the intersection of quantum information and chemical physics The Advances in Chemical Physics series is dedicated to reviewing new and emerging topics as well as the latest developments in traditional areas of study in the field of chemical physics. Each volume features detailed comprehensive analyses coupled with individual points of view that integrate the many disciplines of science that are needed for a full understanding of chemical physics. This volume of the series explores the latest research findings, applications, and new research paths from the quantum information science community. It examines topics in quantum computation and quantum information that are related to or intersect with key topics in chemical physics. The reviews address both what chemistry can contribute to quantum information and what quantum information can contribute to the study of chemical systems, surveying both theoretical and experimental quantum information research within the field of chemical physics. With contributions from an international team of leading experts, Volume 154 offers seventeen detailed reviews, including: Introduction to quantum information and computation for chemistry Quantum computing approach to non-relativistic and relativistic molecular energy calculations Quantum algorithms for continuous problems and their applications Photonic toolbox for quantum simulation Vibrational energy and information transfer through molecular chains Tensor networks for entanglement evolution Reviews published in Advances in Chemical Physics are typically longer than those published in journals, providing the space needed for readers to fully grasp the topic: the fundamentals as well as the latest discoveries, applications, and emerging avenues of research. Extensive cross-referencing enables readers to explore the primary research studies underlying each topic.
New and classical results in computational complexity, including interactive proofs, PCP, derandomization, and quantum computation. Ideal for graduate students.
This book represents the refereed proceedings of the Tenth International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing that was held at the University of New South Wales (Australia) in February 2012. These biennial conferences are major events for Monte Carlo and the premiere event for quasi-Monte Carlo research. The proceedings include articles based on invited lectures as well as carefully selected contributed papers on all theoretical aspects and applications of Monte Carlo and quasi-Monte Carlo methods. The reader will be provided with information on latest developments in these very active areas. The book is an excellent reference for theoreticians and practitioners interested in solving high-dimensional computational problems arising, in particular, in finance, statistics and computer graphics.
This book provides a comprehensive treatment of information-based complexity, the branch of computational complexity that deals with the intrinsic difficulty of the approximate solution of problems for which the information is partial, noisy, and priced. Such problems arise in many areas including economics, physics, human and robotic vision, scientific and engineering computation, geophysics, decision theory, signal processing and control theory.
This book contains five essays on the complexity of continuous problems, written for a wider audience. The first four essays are based on talks presented in 2008 when Henryk Wozniakowski received an honorary doctoral degree from the Friedrich Schiller University of Jena. The focus is on the introduction and history of the complexity of continuous problems, as well as on recent progress concerning the complexity of high-dimensional numerical problems. The last essay provides a brief and informal introduction to the basic notions and concepts of information-based complexity addressed to a general readership.
Conference in honor of Stephen Smale's 70th birthday.
The goal of the Encyclopedia of Optimization is to introduce the reader to a complete set of topics that show the spectrum of research, the richness of ideas, and the breadth of applications that has come from this field. The second edition builds on the success of the former edition with more than 150 completely new entries, designed to ensure that the reference addresses recent areas where optimization theories and techniques have advanced. Particularly heavy attention resulted in health science and transportation, with entries such as "Algorithms for Genomics", "Optimization and Radiotherapy Treatment Design", and "Crew Scheduling".
Multivariate problems occur in many applications. These problems are defined on spaces of $d$-variate functions and $d$ can be huge--in the hundreds or even in the thousands. Some high-dimensional problems can be solved efficiently to within $\varepsilon$, i.e., the cost increases polynomially in $\varepsilon^{-1}$ and $d$. However, there are many multivariate problems for which even the minimal cost increases exponentially in $d$. This exponential dependence on $d$ is called intractability or the curse of dimensionality. This is the first volume of a three-volume set comprising a comprehensive study of the tractability of multivariate problems. It is devoted to tractability in the case of algorithms using linear information and develops the theory for multivariate problems in various settings: worst case, average case, randomized and probabilistic. A problem is tractable if its minimal cost is not exponential in $\varepsilon^{-1}$ and $d$. There are various notions of tractability, depending on how we measure the lack of exponential dependence. For example, a problem is polynomially tractable if its minimal cost is polynomial in $\varepsilon^{-1}$ and $d$. The study of tractability was initiated about 15 years ago. This is the first and only research monograph on this subject. Many multivariate problems suffer from the curse of dimensionality when they are defined over classical (unweighted) spaces. In this case, all variables and groups of variables play the same role, which causes the minimal cost to be exponential in $d$. But many practically important problems are solved today for huge $d$ in a reasonable time. One of the most intriguing challenges of the theory is to understand why this is possible. Multivariate problems may become weakly tractable, polynomially tractable or even strongly polynomially tractable if they are defined over weighted spaces with properly decaying weights. One of the main purposes of this book is to study weighted spaces and obtain necessary and sufficient conditions on weights for various notions of tractability. The book is of interest for researchers working in computational mathematics, especially in approximation of high-dimensional problems. It may be also suitable for graduate courses and seminars. The text concludes with a list of thirty open problems that can be good candidates for future tractability research.