Download Free Nitrite And Nitrate In Human Health And Disease Book in PDF and EPUB Free Download. You can read online Nitrite And Nitrate In Human Health And Disease and write the review.

Nitrite and Nitrate in Human Health and Disease delivers a comprehensive review of nitrite and nitrate biology, from basic biochemistry to the complex physiology and metabolism of these two naturally occurring molecules in the human body. Well-organized and well referenced chapters cover the rich history of nitrite and nitrate, sources of exposure, and the physiological effects when consumed through foods containing nitrite and nitrate. The chapters are written by leading experts, all of whom share their research and perspectives in order to help define the context for benefits vs. any potential risks associated with nitrite and nitrate use, either through dietary ingestion or therapeutic dosing. This diverse collection of authors includes vascular biologists, physiologists, physicians, epidemiologists, cancer biologists, registered dieticians, chemists, and public health experts from five countries in both academia and government. Nitrite and Nitrate in Human Health and Disease provides a balanced view of nitric oxide biochemistry, and nitrite and nitrate biochemistry in physiology and in the food sciences.
This fully revised and updated new edition provides a comprehensive look at nitrite and nitrate and their effect on human health and disease. The first section describes the biochemical analysis of nitrite and nitrate and its role in human physiology. The book then shifts to sources of human exposure of nitrite and nitrate, including environmental and dietary. Finally, the last section discusses nitric oxide-based therapeutics and how nitrite and nitrate biochemistry can be safely harnessed to improve human health. Each chapter provides a balanced, evidence-based view and heavily cites the most recent published literature. They follow a strict chapter format which includes keywords, key points, a conclusion highlighting major findings, and extensive references. The second edition contains new chapters on nitrite and nitrate in age medicine, nitrite and nitrate as a treatment for hypertension, and nitrite and nitrate in exercise performance. Additionally, the editors have expanded the biochemistry section to include chapters on nitrate reducing oral bacteria, nitrite mediated S-Nitrosation, epigenetics and the regulation of nitric oxide, and nitrite control of mitochondrial function. Nitrate and Nitrite in Human Health and Disease, 2e, will be of interest to health professionals, nutritionists, dieticians, biomedical scientists, and food scientists.
Nitroglycerin and other organic nitrates have been used for over a century in the treatment of angina pectoris. Millions of patients, throughout the world, have placed nitroglycerin tablets under the tongue and have experienced rapid and dramatic relief from the chest pain that frequently occurs as a manifestation of disease of the coronary arteries. The empirical observation of the safe use of nitrates for tile alleviation of the symptoms of angina have led to their widespread medical acceptance. The use of organic nitrates preceded any knowledge of their mechanism of action or their ultimate metabolic fate. Thus, more simply stated, although sub lingual nitrates helped the patients, little was known concerning what these drugs do to the body or what the body does to the drugs. A substantial number of investigators have focused on these questions especially during the last two decades. We now have considerably more insight into the pathways of degradation of organic nitrates and the relationship of the metabolic processes to the biological action of these agents. Similarly, considerable effort has been expended in understanding the mechanism of action of these agents directly on vascular smooth muscle and on cardiac work and performance. Finally, there is a more substantive understanding of the physiology of the coronary circulation as well as the" pathophysiologic manifestations of myocardial disease.
The quality of drinking water is paramount for public health. Despite important improvements in the last decades, access to safe drinking water is not universal. The World Health Organization estimates that almost 10% of the population in the world do not have access to improved drinking water sources. Among other diseases, waterborne infections cause diarrhea, which kills nearly one million people every year, mostly children under 5 years of age. On the other hand, chemical pollution is a concern in high-income countries and an increasing problem in low- and middle-income countries. Exposure to chemicals in drinking water may lead to a range of chronic non-communicable diseases (e.g., cancer, cardiovascular disease), adverse reproductive outcomes, and effects on children’s health (e.g., neurodevelopment), among other health effects. Although drinking water quality is regulated and monitored in many countries, increasing knowledge leads to the need for reviewing standards and guidelines on a nearly permanent basis, both for regulated and newly identified contaminants. Drinking water standards are mostly based on animal toxicity data, and more robust epidemiologic studies with accurate exposure assessment are needed. The current risk assessment paradigm dealing mostly with one-by-one chemicals dismisses the potential synergisms or interactions from exposures to mixtures of contaminants, particularly at the low-exposure range. Thus, evidence is needed on exposure and health effects of mixtures of contaminants in drinking water. Finally, water stress and water quality problems are expected to increase in the coming years due to climate change and increasing water demand by population growth, and new evidence is needed to design appropriate adaptation policies. This Special Issue of International Journal of Environmental Research and Public Health (IJERPH) focuses on the current state of knowledge on the links between drinking water quality and human health.
Nitric oxide (NO) is a gas that transmits signals in an organism. Signal transmission by a gas that is produced by one cell and which penetrates through membranes and regulates the function of another cell represents an entirely new principle for signaling in biological systems. NO is a signal molecule of key importance for the cardiovascular system acting as a regulator of blood pressure and as a gatekeeper of blood flow to different organs. NO also exerts a series of other functions, such as acting a signal molecule in the nervous system and as a weapon against infections. NO is present in most living creatures and made by many different types of cells. NO research has led to new treatments for treating heart as well as lung diseases, shock, and impotence. Scientists are currently testing whether NO can be used to stop the growth of cancerous tumors, since the gas can induce programmed cell death, apoptosis. This book is the first comprehensive text on nitric oxide to cover all aspects--basic biology, chemistry, pathobiology, effects on various disease states, and therapeutic implications. - Edited by Nobel Laureate Louis J. Ignarro, editor of the Academic Press journal, Nitric Oxide - Authored by world experts on nitric oxide - Includes an overview of basic principles of biology and chemical biology - Covers principles of pathobiology, including the nervous system, cardiovascular function, pulmonary function, and immune defense
Diet and Health examines the many complex issues concerning diet and its role in increasing or decreasing the risk of chronic disease. It proposes dietary recommendations for reducing the risk of the major diseases and causes of death today: atherosclerotic cardiovascular diseases (including heart attack and stroke), cancer, high blood pressure, obesity, osteoporosis, diabetes mellitus, liver disease, and dental caries.
Radicals for Life: the Various Forms of Nitric Oxide provides an up-to-date overview of the role of nitrosocompounds and nitrosyl-iron complexes in physiology. Nitrosocompounds can be considered as stabilised forms of nitric oxide, one of the most important regulatory molecules in physiology today. Many nitrosocompounds share some of the physiological functions of nitric oxide, and may be formed inside living organisms. This is the first book to be published that is dedicated to the role of such nitrosocompounds in physiology, with particular emphasis on the nitrosocompounds that are endogenously formed in higher organisms and humans. Points of discussion include: physical and chemical properties of the compounds, the main chemical pathways in vivo, as well as the physiological effects that have been recognised to date. Each of the nineteen chapters is written by distinguished specialists in the field, well known for their original and important contributions to the subject. Also included are results from a wide range of studies in vitro, in cell cultures, animal models and human volunteers. Examples of alternative forms of nitric oxide, with special emphasis on their protective role against widespread human diseases like atherosclerosis, Alzheimer's disease, diabetes, sexual dysfunction, and renal insufficiency to stroke and ischemia are also included. - First monograph to consider and provide an overview of endogenous nitrosocompounds and nitrosyl-iron complexes - Extensive bibliographic references, written by specialists of human physiology - Providing high scientific quality with a focus on implications for human diseases
This report considers the biological and behavioral mechanisms that may underlie the pathogenicity of tobacco smoke. Many Surgeon General's reports have considered research findings on mechanisms in assessing the biological plausibility of associations observed in epidemiologic studies. Mechanisms of disease are important because they may provide plausibility, which is one of the guideline criteria for assessing evidence on causation. This report specifically reviews the evidence on the potential mechanisms by which smoking causes diseases and considers whether a mechanism is likely to be operative in the production of human disease by tobacco smoke. This evidence is relevant to understanding how smoking causes disease, to identifying those who may be particularly susceptible, and to assessing the potential risks of tobacco products.
This book presents WHO guidelines for the protection of public health from risks due to a number of chemicals commonly present in indoor air. The substances considered in this review, i.e. benzene, carbon monoxide, formaldehyde, naphthalene, nitrogen dioxide, polycyclic aromatic hydrocarbons (especially benzo[a]pyrene), radon, trichloroethylene and tetrachloroethylene, have indoor sources, are known in respect of their hazardousness to health and are often found indoors in concentrations of health concern. The guidelines are targeted at public health professionals involved in preventing health risks of environmental exposures, as well as specialists and authorities involved in the design and use of buildings, indoor materials and products. They provide a scientific basis for legally enforceable standards.