Download Free Nitrate And Man Book in PDF and EPUB Free Download. You can read online Nitrate And Man and write the review.

Nitrate is ubiquitous. It is present in water, soil, plants and food, and is also a normal human metabolite. The main external sources of nitrate are vegetables and drinking water. This book examines the relationship between nitrates and human health.During the last 50 years or so, nitrate has been feared as the source of the rare condition called methaemoglobinaemia, or 'blue baby syndrome', for young infants. Nitrate has also been implicated with causing cancer, through increased formation of carcinogenic compounds. Both claims are based on dubious evidence. This book sets out research results to disprove these assumptions, and goes on to explore the beneficial effects of nitrate in preventing infections, cancer and cardiovascular diseases. It is essential reading for researchers in medicine, and those in agriculture and food industries.
This fully revised and updated new edition provides a comprehensive look at nitrite and nitrate and their effect on human health and disease. The first section describes the biochemical analysis of nitrite and nitrate and its role in human physiology. The book then shifts to sources of human exposure of nitrite and nitrate, including environmental and dietary. Finally, the last section discusses nitric oxide-based therapeutics and how nitrite and nitrate biochemistry can be safely harnessed to improve human health. Each chapter provides a balanced, evidence-based view and heavily cites the most recent published literature. They follow a strict chapter format which includes keywords, key points, a conclusion highlighting major findings, and extensive references. The second edition contains new chapters on nitrite and nitrate in age medicine, nitrite and nitrate as a treatment for hypertension, and nitrite and nitrate in exercise performance. Additionally, the editors have expanded the biochemistry section to include chapters on nitrate reducing oral bacteria, nitrite mediated S-Nitrosation, epigenetics and the regulation of nitric oxide, and nitrite control of mitochondrial function. Nitrate and Nitrite in Human Health and Disease, 2e, will be of interest to health professionals, nutritionists, dieticians, biomedical scientists, and food scientists.
Nitrite and Nitrate in Human Health and Disease delivers a comprehensive review of nitrite and nitrate biology, from basic biochemistry to the complex physiology and metabolism of these two naturally occurring molecules in the human body. Well-organized and well referenced chapters cover the rich history of nitrite and nitrate, sources of exposure, and the physiological effects when consumed through foods containing nitrite and nitrate. The chapters are written by leading experts, all of whom share their research and perspectives in order to help define the context for benefits vs. any potential risks associated with nitrite and nitrate use, either through dietary ingestion or therapeutic dosing. This diverse collection of authors includes vascular biologists, physiologists, physicians, epidemiologists, cancer biologists, registered dieticians, chemists, and public health experts from five countries in both academia and government. Nitrite and Nitrate in Human Health and Disease provides a balanced view of nitric oxide biochemistry, and nitrite and nitrate biochemistry in physiology and in the food sciences.
From the Introduction With regard to nitrate and nitrite, the perceived hazards are to the ecological balance in rivers and lakes, and to human health. Increased nitrate levels in river water lead to increased growth of algae and consequent decrease in the level of biologically available oxygen (BAO). In extreme forms, the algae form unsightly blooms on the water surface, and the BAO level falls below that necessary to support fish and other animal life. At this extreme, there is little dispute that efforts should be made to restore the ecological balance, and this is best achieved by reversing the increase in nitrate concentration that caused the problem. The health hazards are less clear, but include the risk of methaemoglobinaemia in young infants and the possible risk of gastric cancer, particularly in certain high-risk patient groups. These health risks have led to legislation to control the exposure of humans to nitrate from drinking water and as a food additive . . . What can be done about this and how can the problem be solved (if, indeed, there is a problem)? It is normal practice to add nitrate and nitrite to food as a cosmetic and as a preservative. Is this necessary? If so, how much do we need to add? Are there alternatives? What effect does added nitrate have on total nitrate exposure of humans? . . . In this book, we have attempted to answer, or at least to give the background to, some of the questions. . . .
Nitroglycerin and other organic nitrates have been used for over a century in the treatment of angina pectoris. Millions of patients, throughout the world, have placed nitroglycerin tablets under the tongue and have experienced rapid and dramatic relief from the chest pain that frequently occurs as a manifestation of disease of the coronary arteries. The empirical observation of the safe use of nitrates for tile alleviation of the symptoms of angina have led to their widespread medical acceptance. The use of organic nitrates preceded any knowledge of their mechanism of action or their ultimate metabolic fate. Thus, more simply stated, although sub lingual nitrates helped the patients, little was known concerning what these drugs do to the body or what the body does to the drugs. A substantial number of investigators have focused on these questions especially during the last two decades. We now have considerably more insight into the pathways of degradation of organic nitrates and the relationship of the metabolic processes to the biological action of these agents. Similarly, considerable effort has been expended in understanding the mechanism of action of these agents directly on vascular smooth muscle and on cardiac work and performance. Finally, there is a more substantive understanding of the physiology of the coronary circulation as well as the" pathophysiologic manifestations of myocardial disease.
The nitrate content of drinking water is rising at an alarming rate in several regions of NATO countries and elsewhere in the world. The increase is due to lack of proper sewage treatment, and primarily to excess fertilizer application. Also, eutrophication in several coastal areas is triggered by high nitrate concentrations. The main purpose of this book is to integrate scientific knowledge related to exposure assessment, health consequences and control of nitrate contamination in water. The motivation is related to the magnitude, the possible adverse health effects, and the high cost of control ling nitrate contamination. Future research tasks are defined by an interaction among hydro logists, toxicologists and environmental engineers in an integrated framework for nitrate risk management. The target readership of this book is a mix of university colleagues, practitioners from both the private and public sectors and advanced graduate students working with the hydrological, health science or environmental engineering aspects of nitrate contamination. The main conclusions include: 1. For risk assessment purposes, knowledge and sufficiently accurate models are available to predict nitrate load and its fate in water under changes in land use. 2. Once agricultural exposure controls are implemented, the response times in ground water may be so long as to make controls unrealistic. 3. It is still unknown whether agricultural best management practice is a compromise between nitrate risk reduction and agricultural revenue. 4. The current drinking water guidelines of 10 mg/L NOrN need not be changed.
This work has been selected by scholars as being culturally important and is part of the knowledge base of civilization as we know it. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. To ensure a quality reading experience, this work has been proofread and republished using a format that seamlessly blends the original graphical elements with text in an easy-to-read typeface. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Nitrate Handbook: Environmental, Agricultural, and Health Effects provides an overview of the entire nitrate cycle and the processes influencing nitrate transformation. It clearly identifies the role of nitrate as an essential nutrient in plant growth, food preservation, and human health. Using the most up-to-date knowledge and research, this handbook illustrates how the steadily increasing human population and demand for food, which results in higher amounts of nitrate needed by soils, makes new regulations on the management and usage of nitrates a high priority. A detailed explanation concerning the discrepancies between the public’s perception of nitrate’s harm versus the reality of its human health benefits is given via a balanced and evidence-based approach. All questions pertaining to the influences of nitrate and its derivatives on plant physiology and human health are explored in depth. This comprehensive resource with contributions from distinguished researches in the field is a must-have for professionals and students who study and work with nitrates. Features: Includes in depth discussion on the wide spectrum of nitrate present in the environment. Focuses on the progress made on nitrate research and its importance. Answers all questions about nitrate and its derivatives’ influences on plant physiology and human health. Enables decision makers and public authorities to manage social concerns Compiles in one resource the findings of many distinguished researchers in the field.
The quality of drinking water is paramount for public health. Despite important improvements in the last decades, access to safe drinking water is not universal. The World Health Organization estimates that almost 10% of the population in the world do not have access to improved drinking water sources. Among other diseases, waterborne infections cause diarrhea, which kills nearly one million people every year, mostly children under 5 years of age. On the other hand, chemical pollution is a concern in high-income countries and an increasing problem in low- and middle-income countries. Exposure to chemicals in drinking water may lead to a range of chronic non-communicable diseases (e.g., cancer, cardiovascular disease), adverse reproductive outcomes, and effects on children’s health (e.g., neurodevelopment), among other health effects. Although drinking water quality is regulated and monitored in many countries, increasing knowledge leads to the need for reviewing standards and guidelines on a nearly permanent basis, both for regulated and newly identified contaminants. Drinking water standards are mostly based on animal toxicity data, and more robust epidemiologic studies with accurate exposure assessment are needed. The current risk assessment paradigm dealing mostly with one-by-one chemicals dismisses the potential synergisms or interactions from exposures to mixtures of contaminants, particularly at the low-exposure range. Thus, evidence is needed on exposure and health effects of mixtures of contaminants in drinking water. Finally, water stress and water quality problems are expected to increase in the coming years due to climate change and increasing water demand by population growth, and new evidence is needed to design appropriate adaptation policies. This Special Issue of International Journal of Environmental Research and Public Health (IJERPH) focuses on the current state of knowledge on the links between drinking water quality and human health.