Download Free Next Tokamak Facility Book in PDF and EPUB Free Download. You can read online Next Tokamak Facility and write the review.

This book introduces the research process and principles of the controlled super-coupling nuclear fusion experiment at the Experimental Advanced Superconducting Tokamak (EAST) nuclear fusion reactor in Hefei, China. It uses straightforward language to explain how nuclear fusion can provide safe, environmentally friendly, clean, and inexhaustible energy in future. EAST is the world’s first fully superconducting, non-circular cross-section tokamak nuclear fusion experimental device, independently developed by the Chinese Academy of Sciences. This book helps demonstrate China’s cutting-edge scientific and technological advances to the rest of the world, helps spread the scientific spirit to people around the globe, and promotes prosperity and development. The book is intended for all non-experts who would like to learn more about nuclear energy and related technologies.
Fusion energy offers the prospect of addressing the nation's energy needs and contributing to the transition to a low-carbon emission electrical generation infrastructure. Technology and research results from U.S. investments in the major fusion burning plasma experiment known as ITER, coupled with a strong foundation of research funded by the Department of Energy (DOE), position the United States to begin planning for its first fusion pilot plant. Strong interest from the private sector is an additional motivating factor, as the process of decarbonizing and modernizing the nation's electric infrastructure accelerates and companies seek to lead the way. At the request of DOE, Bringing Fusion to the U.S. Grid builds upon the work of the 2019 report Final Report of the Committee on a Strategic Plan for U.S. Burning Plasma Research to identify the key goals and innovations - independent of confinement concept - that are needed to support the development of a U.S. fusion pilot plant that can serve as a model for producing electricity at the lowest possible capital cost.
"Offers scientists and researchers the scientific basics, up-to-date current research, technical developments, and practical applications needed in fusion energy research/"--pub. desc.
The tokamak is the principal tool in controlled fusion research. This book acts as an introduction to the subject and a basic reference for theory, definitions, equations, and experimental results. The fourth edition has been completely revised, describing their development of tokamaks to the point of producing significant fusion power.
Fusion offers the prospect of virtually unlimited energy. The United States and many nations around the world have made enormous progress toward achieving fusion energy. With ITER scheduled to go online within a decade and demonstrate controlled fusion ten years later, now is the right time for the United States to develop plans to benefit from its investment in burning plasma research and take steps to develop fusion electricity for the nation's future energy needs. At the request of the Department of Energy, the National Academies of Sciences, Engineering, and Medicine organized a committee to develop a strategic plan for U.S. fusion research. The final report's two main recommendations are: (1) The United States should remain an ITER partner as the most cost-effective way to gain experience with a burning plasma at the scale of a power plant. (2) The United States should start a national program of accompanying research and technology leading to the construction of a compact pilot plant that produces electricity from fusion at the lowest possible capital cost.
Magnetic Fusion Technology describes the technologies that are required for successful development of nuclear fusion power plants using strong magnetic fields. These technologies include: • magnet systems, • plasma heating systems, • control systems, • energy conversion systems, • advanced materials development, • vacuum systems, • cryogenic systems, • plasma diagnostics, • safety systems, and • power plant design studies. Magnetic Fusion Technology will be useful to students and to specialists working in energy research.
A concise and accessible explanation of the science and technology behind the domestication of nuclear fusion energy. Nuclear fusion research tells us that the Sun uses one gram of hydrogen to make as much energy as can be obtained by burning eight tons of petroleum. If nuclear fusion—the process that makes the stars shine—could be domesticated for commercial energy production, the world would gain an inexhaustible source of energy that neither depletes natural resources nor produces greenhouse gases. In Star Power, Alan Bécoulet offers a concise and accessible primer on fusion energy, explaining the science and technology of nuclear fusion and describing the massive international scientific effort to achieve commercially viable fusion energy. Bécoulet draws on his work as Head of Engineering at ITER (International Thermonuclear Experimental Reactor) to explain how scientists are trying to “put the sun in a box.” He surveys the history of nuclear power, beginning with post–World War II efforts to use atoms for peaceful purposes and describes how energy is derived from fusion, explaining that the essential principle of fusion is based on the capacity of nucleons (protons and neutrons) to assemble and form structures (atomic nuclei) in spite of electrical repulsion between protons, which all have a positive charge. He traces the evolution of fusion research and development, mapping the generation of electric current though fusion. The ITER project marks a giant step in the development of fusion energy, with the potential to demonstrate the feasibility of a nuclear fusion reactor. Star Power offers an introduction to what may be the future of energy production.