Download Free New Visions In Plant Science Book in PDF and EPUB Free Download. You can read online New Visions In Plant Science and write the review.

Over the past decade, progress in plant science and molecular technologies has grown considerably. This book focuses on plant biotechnology applications specializing in certain aspects of breeding and molecular marker-assisted selection processes, omic strategies, usage of bioinformatic tools, and nanotechnological improvements in agricultural sciences. Most farmers and breeders can no longer simply turn to the older strategies, and new instructions are needed to adapt their systems to achieve their production goals. The book covers new information on using metabolomics and nanotechnology in agriculture. In these circumstances, all new data and technology are very important in plant science. The topics in this book are practical and user-friendly. They allow practitioners, students, and academicians with specific background knowledge to feel confident about the principles presented on a new generation of molecular plant biotechnology applications.
This book presents the "New Vision 2050," which adds the concept of the “platinum society” to the “Vision 2050”. The 20th century was a century in which energy led the development of material civilization, resulting in deletion of resources, global warming and climate change. What form should sustainable material and energy take to protect the Earth? The "Vision 2050" was established 20 years ago as a model that we should pursue for the next half century. Fortunately, the world is on course for the Vision 2050. The 21st century will be a century in which we seek qualitative richness, with the Vision 2050 as the material basis. That is, a “platinum society” that has resource self-sufficiency and resource symbiosis, and where people remain active throughout their lives and have a wide range of choices and opportunities for free participation. Since the author presented the concept of "Vision 2050" in 1999, the idea has been introduced in two books entitled Vision 2050: Roadmap for a Sustainable Earth (2008) and Beyond the Limits to Growth: New Ideas for Sustainability from Japan (2014). The latter includes a chapter that sheds light on the concept of a “platinum society”. In this publication, the author presents the "New Vision 2050" in more detail.
This is the first volume of its kind Plants in Science Fiction shows how considerations of plant-life in SF can transform our understanding of institutions and boundaries, erecting – and dismantling – new visions of utopian and dystopian futures. Its original essays argue that plant-life in SF is transforming our attitudes toward morality, politics, economics, and cultural life.
Metabolomics – which deals with all metabolites of an organism – is a rapidly-emerging sector of post-genome research fields. It plays significant roles in a variety of fields from medicine to agriculture and holds a fundamental position in functional genomics studies and their application in plant biotechnology. This volume comprehensively covers plant metabolomics for the first time. The chapters offer cutting-edge information on analytical technology, bioinformatics and applications. They were all written by leading researchers who have been directly involved in plant metabolomics research throughout the world. Up-to-date information and future developments are described, thereby producing a volume which is a landmark of plant metabolomics research and a beneficial guideline to graduate students and researchers in academia, industry, and technology transfer organizations in all plant science fields.
Explores the secret lives of various plants, from the colors they see to whether or not they really like classical music to their ability to sense nearby danger.
Life on Earth would be impossible without plants. Humans rely on plants for most clothing, furniture, food, as well as for many pharmaceuticals and other products. Plant genome sciences are essential to understanding how plants function and how to develop desirable plant characteristics. For example, plant genomic science can contribute to the development of plants that are drought-resistant, those that require less fertilizer, and those that are optimized for conversion to fuels such as ethanol and biodiesel. The National Plant Genome Initiative (NPGI) is a unique, cross-agency funding enterprise that has been funding and coordinating plant genome research successfully for nine years. Research breakthroughs from NPGI and the National Science Foundation (NSF) Arabidopsis 2010 Project, such as how the plant immune system controls pathogen defense, demonstrate that the plant genome science community is vibrant and capable of driving technological advancement. This book from the National Research Council concludes that these programs should continue so that applied programs on agriculture, bioenergy, and others will always be built on a strong foundation of fundamental plant biology research.
Cultivation of grain crops has been rightly recognized as one of the main drivers in shaping human civilizations. Considering their key role in fulfilling a major portion of the global food needs, grain crops are the most widely grown crops around the world. Unfortunately, like many other agronomic crops, grain crops are quite vulnerable to climate change and this has posed multifaceted threats to agricultural sustainability. To add to the menace, the deteriorating quantity and quality of both land and water as primary factors of production are further aggravating the scenario. Confronting such challenges demands innovative adaptation strategies through intensification of grain crop production that can ensure grain self-sufficiency worldwide.
The sixth mass extinction or Anthropocene extinction is one of the most pervasive issues of our time. Animals, Plants and Afterimages brings together leading scholars in the humanities and life sciences to explore how extinct species are represented in art and visual culture, with a special emphasis on museums. Engaging with celebrated cases of vanished species such as the quagga and the thylacine as well as less well-known examples of animals and plants, these essays explore how representations of recent and ancient extinctions help advance scientific understanding and speak to contemporary ecological and environmental concerns.
World population is growing at an alarming rate and is anticipated to reach about six billion by the end of year 2050. On the other hand, agricultural productivity is not increasing at a required rate to keep up with the food demand. The reasons for this are water shortages, depleting soil fertility and mainly various abiotic stresses. The fast pace at which developments and novel findings that are recently taking place in the cutting edge areas of molecular biology and basic genetics, have reinforced and augmented the efficiency of science outputs in dealing with plant abiotic stresses. In depth understanding of the stresses and their effects on plants is of paramount importance to evolve effective strategies to counter them. This book is broadly dived into sections on the stresses, their mechanisms and tolerance, genetics and adaptation, and focuses on the mechanic aspects in addition to touching some adaptation features. The chief objective of the book hence is to deliver state of the art information for comprehending the nature of abiotic stress in plants. We attempted here to present a judicious mixture of outlooks in order to interest workers in all areas of plant sciences.
Discover the role of nanotechnology in promoting plant growth and protection through the management of microbial pathogens In Nanotechnology in Plant Growth Promotion and Protection, distinguished researcher and author Dr. Avinash P. Ingle delivers a rigorous and insightful collection of some of the latest developments in nanotechnology particularly related to plant growth promotion and protection. The book focuses broadly on the role played by nanotechnology in growth promotion of plants and their protection through the management of different microbial pathogens. You’ll learn about a wide variety of topics, including the role of nanomaterials in sustainable agriculture, how nano-fertilizers behave as soil feed, and the dual role of nanoparticles in plant growth promotion and phytopathogen management. You’ll also discover why nanotechnology has the potential to revolutionize the current agricultural landscape through the development of nano-based products, like plant growth promoters, nano-fertilizers, nano-pesticides, and nano-insecticides. Find out why nano-based products promise to be a cost-effective, economically viable, and eco-friendly approach to tackling some of the most intractable problems in agriculture today. You’ll also benefit from the inclusion of: A thorough introduction to the prospects and impacts of using nanotechnology to promote the growth of plants and control plant diseases An exploration of the effects of titanium dioxide nanomaterials on plant growth and the emerging applications of zinc-based nanoparticles in plant growth promotion Practical discussions of nano-fertilizer in enhancing the production potentials of crops and the potential applications of nanotechnology in plant nutrition and protection for sustainable agriculture A concise treatment of nanotechnology in seed science and soil feed Toxicological concerns of nanomaterials used in agriculture Perfect for undergraduate, graduate, and research students of nanotechnology, agriculture, plant science, plant physiology, and crops, Nanotechnology in Plant Growth Promotion and Protection will also earn a place in the libraries of professors and researchers in these areas, as well as regulators and policymakers.