Download Free New Spaces In Mathematics Book in PDF and EPUB Free Download. You can read online New Spaces In Mathematics and write the review.

After the development of manifolds and algebraic varieties in the previous century, mathematicians and physicists have continued to advance concepts of space. This book and its companion explore various new notions of space, including both formal and conceptual points of view, as presented by leading experts at the New Spaces in Mathematics and Physics workshop held at the Institut Henri Poincaré in 2015. The chapters in this volume cover a broad range of topics in mathematics, including diffeologies, synthetic differential geometry, microlocal analysis, topos theory, infinity-groupoids, homotopy type theory, category-theoretic methods in geometry, stacks, derived geometry, and noncommutative geometry. It is addressed primarily to mathematicians and mathematical physicists, but also to historians and philosophers of these disciplines.
After the development of manifolds and algebraic varieties in the previous century, mathematicians and physicists have continued to advance concepts of space. This book and its companion explore various new notions of space, including both formal and conceptual points of view, as presented by leading experts at the New Spaces in Mathematics and Physics workshop held at the Institut Henri Poincaré in 2015. This volume covers a broad range of topics in mathematical physics, including noncommutative geometry, supergeometry, derived symplectic geometry, higher geometric quantization, intuitionistic quantum logic, problems with the continuum description of spacetime, twistor theory, loop quantum gravity, and geometry in string theory. It is addressed primarily to mathematical physicists and mathematicians, but also to historians and philosophers of these disciplines.
Created by NASA for high school students interested in space science, this collection of worked problems covers a broad range of subjects, including mathematical aspects of NASA missions, computation and measurement, algebra, geometry, probability and statistics, exponential and logarithmic functions, trigonometry, matrix algebra, conic sections, and calculus. In addition to enhancing mathematical knowledge and skills, these problems promote an appreciation of aerospace technology and offer valuable insights into the practical uses of secondary school mathematics by professional scientists and engineers. Geared toward high school students and teachers, this volume also serves as a fine review for undergraduate science and engineering majors. Numerous figures illuminate the text, and an appendix explores the advanced topic of gravitational forces and the conic section trajectories.
Tim Maudlin sets out a completely new method for describing the geometrical structure of spaces, and thus a better mathematical tool for describing and understanding space-time. He presents a historical review of the development of geometry and topology, and then his original Theory of Linear Structures.
Offers a comprehensive presentation of spectral spaces focussing on their topology and close connections with algebra, ordered structures, and logic.
The word "critical" in the title of this collection has three meanings, all of which are relevant. One meaning, as applied to a situation or problem, is "at a point of crisis". A second meaning is "expressing adverse or disapproving comments or judgments". A third is related to the verb "to critique", meaning "to analyze the merits and faults of". The authors contributing to this book pose challenging questions, from multiple perspectives, about the roles of mathematics in society and the implications for education. Traditional reasons for teaching mathematics include: preparing a new generation of mathematics researchers and a cadre of technically competent users of mathematics; training students to think logically; and because mathematics is as much part of cultural heritage as literature or music. These reasons remain valid, though open to critique, but a deeper analysis is required that recognizes the roles of mathematics in framing many aspects of contemporary society, that will connect mathematics education to the lived experiences of students, their communities, and society in general, and that acknowledges the global ethical responsibilities of mathematicians and mathematics educators. The book is organized in four sections (1) Mathematics education: For what and why? (2) Globalization and cultural diversity, (3) Mathematics, education, and society and (4) Social justice in, and through, mathematics education The chapters address fundamental issues such as the relevance of school mathematics in people's lives; creating a sense of agency for the field of mathematics education, and redefining the relationship between mathematics as discipline, mathematics as school subject and mathematics as part of people's lives.
The book explores various facets of transdisciplinarity in mathematics education and its importance for research and practice. The book comprehensively outlines the ways that mathematics interacts with different disciplines, world views, and contexts; these topics include: mathematics and the humanities, the complex nature of mathematics education, mathematics education and social contexts, and more. It is an invaluable resource for mathematics education students, researchers, and practitioners seeking to incorporate transdisciplinarity into their own practice.
This book addresses key issues of Technology and Innovation(s) in Mathematics Education, drawing on heterogeneous ways of positioning about innovation in mathematical practice with technology. The book offers ideas and meanings of innovation as they emerge from the entanglement of the various researchers with the mathematical practice, the teacher training program, the student learning and engagement, or the research method that they are telling stories about. The multiple theoretical or empirical perspectives capture a rich landscape, in which the presence of digital technology entails the emergence of new practices, techniques, environments and devices, or new ways of making sense of technology in research, teaching and learning.