Download Free New Directions In Guided Wave And Coherent Optics Book in PDF and EPUB Free Download. You can read online New Directions In Guided Wave And Coherent Optics and write the review.

As optical fiber communication systems have moved out of the laboratory and into commercial use over the past several years, the general field of guided wave and coherent optics has undergone a radical transformation. Research in optical communication has turned heavily towards single-mode technology and, totally new phenomena and applications of the existing technology, outside the communication field, have begun to proliferate. It was for this reason that we decided to organize a NATO Advanced Study Institute assembling the leading workers in this new domain, in order to define the state of the art, and, develop an idea of the new directions the field might take. The lectures and seminars presented at this Advanced Study Institute form the basis for this book. The subjects treated can be roughly grouped as : - New phenomena in optical fibers such as non-linear effects, soliton propagation and polarization conservation. - New applications of fibers, to measurements of rotation pressure, temperature etc ... and medical uses. - Advanced and exploratory work on single-mode fiber communica tion systems including the use of coherent transmission schemes and optical amplification. - Recent developments of optical information treatment based on four-wave mixing. - Integrated optical devices and technologies including bistable devices, parametric oscillators, and optical logic. In addition to these major topics, a number of national reviews and specialized seminars treating new guided wave structures and materials are included. The co-editors admit being rather pleased with the result.
The object of this school, held at Cargese, Corsica (France) from August 12th to 24th 1991, was the presentation of the field of guided wave nonlinear optics in a comprehensive, coherent, and heuristic fashion. It seems appropriate that this school began with an historical introduction by Professor Nicolaas Bloembergen of Harvard, the acknowledged "father" of nonlinear optics, in general, and concluded with a round table discussion headed by Dr. Eric Spitz, the Scientific Director of a multinational electronics company interested in developing industrial applications of guided wave nonlinear optics. The lectures covered both the theoretical framework of the field and applications to basic scientific research, optical communications and technical instrumentation. Specific topics developed included materials for guided wave nonlinear optics, nonlinear interactions using integrated optical guides, nonlinear surface waves, solitons, fiber nonlinear optics, ultra-fast coupler switching as well as the related topic of fiber and integrated optical lasers and amplifiers. Lectures have also been devoted to squeezed states, chaos and strange attractors. The subjects covered by the school underlines one of the major ways in which this field has evolved over the past thirty some odd years. The path from the original experiments with materials requiring mega-watt power lasers to the recent developments in guided wave configurations using milliwatt power diode lasers is marked by the conjunction of ever improving fundamental scientific comprehension and continuing technological developments.
Guiding, Diffraction, and Confinement of Optical Radiation presents a wide array of research studies on optics and electromagnetism. This book is organized into eight chapters that cover the problems related to optical radiation propagation and confinement. Chapter I examines the general features of electromagnetic propagation and introduces the basic concepts pertaining to the description of the electromagnetic field and its interaction with matter. Chapter II is devoted to asymptotic methods of solution of the wave equation, with particular emphasis on the asymptotic representation of the field in the form of the Luneburg-Kline series. This chapter also looks into a number of optical systems characterized by different refractive index distributions relying on the eikonal equation. Chapter III deals with stratified media, such as the multilayered thin films, metallic and dielectric reflectors, and interference filters. Chapters IV and V discuss the problem of propagation and diffraction integrals. Chapter VI describes the scattering from obstacles and the metallic and dielectric gratings. Chapters VII considers the passive and active resonators employed in connection with laser sources for producing a confinement near the axis of an optical cavity and Fabry-Perot interferometers and mainly relies on the use of diffraction theory. Chapter VIII presents the analytic approach to the study of transverse confinement near the axis of a dielectric waveguide hinges on the introduction of modal solutions of the wave equation. This book will be of value to quantum electronics engineers, physicists, researchers, and optics and electromagnetism graduate students.
This book is based on the contributions to the 17th International School of Materials Sci ence and Technology, entitled Nonlinear Waves in Solid State Physics. This was held as a NATO Advanced Study Institute at the Ettore Majorana Centre in Erice, Sicily between the st th 1 and 15 July 1989, and attracted almost 100 participants from over 20 different countries. The book covers the fundamental properties of nonlinear waves in solid state materials, dealing with both theory and experiment. The aim is to emphasise the methods underpinning the important new developments in this area. The material is organised into subject areas that can broadly be classified into the following groups: the theory of nonlinear surface and guided waves in self-focusing magnetic and non-magnetic materials; nonlinear effects at in terfaces; nonlinear acoustoelectronic and surface acoustic waves; Lagrangian and Hamiltonian formulations of nonlinear problems; nonlinear effects in optical fibres; resonance phenomena; and nonlinear integrated optics. The chapters have been grouped together according to these classifications as closely as possible, but it should be borne in mind that although there is much overlap of ideas, each chapter is essentially independent of the others. We would like to acknowledge the sponsorship of the NATO Scientific Affairs Division, the European Physical Society, the National Science Foundation of the USA, the European Research Office, the Italian Ministry of Education, the Italian Ministry of Scientific and Technological Research, the Sicilian Regional Government and the Ugo Bordoni Foundation.
Fibre Optics Is A Very Important Constituent Of Modern Information Technology. One Major Economic Benefit Offered By Fibre Optics Is Very High Information Transmission Rate At Low Cost Per Circuit-Km. The First Fibre Optic Telephone Link Went Public In Late 1970S. Ever Since, The Industrially Advanced Nations Around The World Have Been Striving To Deploy Fibre Optics In Almost Every Sector Of Communication Including Computer Networks And Data Links. Rarely, Since The Discovery Of Transistors, Have We Noticed Such A Fantastic Growth Rate Of A New Technology. As An Important Byproduct Of This Phenomenal Progress, A New Class Of Ultra-Sensitive Optical Sensors And Devices Based On Fibre Optics Has Emerged, Which Are Being Developed For Large Scale Use In Industrial And Biomedical Sectors. This Book Provides Semi-Tutorial Presentations Of The Fundamentals Of This Emerging Technology As Applied To Telecommunication And Sensor Development. Each Chapter, Contributed By Leading Researchers, Is Appended With A Large Number Of References To The Original Publications.The Book Is Broadly Divided Into Three Parts. The First Part Is Devoted To Propagation Effects In Optical Waveguides Including Polarization And Non-Linear Effects And Their Measurements. Fabrication And Cabling Technologies Of Optical Fibres Are Also Discussed In This Part. The Second Part Of The Book Deals With Optical Sources, Detectors, Integrated Optical Devices And System Designs Involved In Optical Communication Technology. The Last Part Of The Book Covers Topics Like Intensity Modulated And Interferometric Optical Fibre Sensors, In-Line Fibre Optic Components For Signal Processing And Multiplexing Of Optical Signals, And Application Of Fibre Optics In The Power Sector. The Extensive Coverage Should Prove Useful To Senior Undergraduate And Postgraduate Students, Researchers And Also To R & D Engineers Who Want A Tutorial Introduction To The Technologies Of Fibre Optic Telecommunication And Sensors.
This book reviews basic electromagnetic (EM) wave theory and applies it specifically to lasers in order to give the reader not only tangible examples of how the theory is manifested in real life, but also practical knowledge about lasers, and their operation and usage. The latter can be useful for those involved with using lasers. As a short treatise on this subject matter, this book is not intended to dwell deeply into the details of EM waves nor lasers. A bibliography is provided for those who wish to explore in more depth the topics covered in this book. Rather the aim of this book is to offer a quick overview, which will allow the reader to gain a competent general understanding of EM waves and lasers.
In recent years the physics of electromagnetic surface phenomena has developed rapidly, evolving into technologies for communications and industry, such as fiber and integrated optics. The variety of phenomena based on electromagnetism at surfaces is rich and this book was written with the aim of summarizing the available knowledge in selected areas of the field. The book contains reviews written by solid state and optical physicists on the nonlinear interaction of electromagnetic waves at and with surfaces and films. Both the physical phenomena and some potential applications are dealt with. Included are discussions of nonlinear wave mixing on films and surfaces, second harmonic generation in waveguides and at surfaces, nonlinear waves guided by dielectric and semiconductor surfaces and films, surface gratings formed by high energy laser beams, and reflection and transmission switching of strong beams onto nonlinear surfaces. Chapters on light scattering from surface excitations and magnetic order-disorder and orientational phase transitions complete this essential contribution to the modern optics literature.
Contemporary Nonlinear Optics discusses the different activities in the field of nonlinear optics. The book is comprised of 10 chapters. Chapter 1 presents a description of the field of nonlinear guided-wave optics. Chapter 2 surveys a new branch of nonlinear optics under the heading optical solitons. Chapter 3 reviews recent progress in the field of optical phase conjugation. Chapter 4 discusses ultrafast nonlinear optics, a field that is growing rapidly with the ability of generating and controlling femtosecond optical pulses. Chapter 5 examines a branch of nonlinear optics that may be termed nonlinear quantum optics. Chapter 6 reviews the new field of photorefractive adaptive neural networks. Chapter 7 presents a discussion of recent successes in the development of nonlinear optical media based on organic materials. Chapter 8 reviews the field of nonlinear optics in quantum confined structures. Chapter 9 reviews the field of nonlinear laser spectroscopy, with emphasis on advances made during the 1980s. Finally, Chapter 10 reviews the field of nonlinear optical dynamics by considering nonlinear optical systems that exhibit temporal, spatial, or spatio-temporal instabilities. This book is a valuable source for physicists and other scientists interested in optical systems and neural networks.
The field of nonlinear optics has witnessed a tremendous evolution since its beginnings in the early sixties. Its frontiers have been extended in many direc tions and its techniques have intruded upon many areas of both fundamental and practical interest. The field itself has been enriched with many new phe nomena and concepts that have further extended its scope and strengthened its connection with other areas. As a consequence, it is becoming increasingly unrealistic to expect to cover the different facets and trends of this field in the lectures or proceed ings of a summer school, however advanced these may be. However much of the current progress and interest in this field springs to a large extent from the promise and expectation that highly performing all-optical devices that exploit and operate on the principles of nonlinear optics will constitute an important branch of future technology and will provide new alternatives in information processing and transmission. The conception of new devices, in general, requires an intricate and bold combination of facts and methods from most diverse fields, in order to perform functions and operations that fit into an overall technological ensemble.
Proceedings of the NATO Advanced Study Institute, Erice, Italy, May 10-20, 1986