Download Free New Developments In Nanosensors For Pharmaceutical Analysis Book in PDF and EPUB Free Download. You can read online New Developments In Nanosensors For Pharmaceutical Analysis and write the review.

New Developments for Nanosensors in Pharmaceutical Analysis presents an overview of developments in nanosensor usage in pharmaceutical analysis, thereby helping pharmaceutical companies attain reliable, precise, and accurate analysis of pharmaceuticals. This book presents very simple, precise, sensitive, selective, fast, and relatively inexpensive methods for pre-treatment, prior to analysis. These methods may be considered for further application in clinical studies and assays. The book includes the manufacturing of sensors for pharmaceutical analysis at nano- or smaller scales, and gives simple and relatable designs for the fabrication of sensors. Twelve chapters cover an introduction to the topic, immobilization techniques, mechanism effect of nanomaterials on structure, optical nanosensors for pharmaceutical detection, chemical nanosensors in pharmaceutical analysis, noble metal nanoparticles in electrochemical analysis of drugs, photo-electrochemical nanosensors for drug analysis, molecularly imprinted polymer based nanosensors for pharmaceutical analysis, nanomaterials for drug delivery systems, nanomaterials enriched nucleic acid-based biosensors, nanosensors in biomarker detection, and nanomaterials-based enzyme biosensors for electrochemical applications. - Presents nanosensor types, synthesis, immobilizations and applications in different fields - Gives simple repeatable designs for the fabrication of sensors for pharmaceutical analysis - Details how to carry out sensitive analysis of pharmaceuticals using nanosensors - Describes how to synthesize and immobilize nanosensors, and how nanosensors can be applied in drug assay - Proposes innovative ways to optimize pharmaceutical processes with nanosensors
Advanced Sensor Technology: Biomedical, Environmental, and Construction Applications introduces readers to the past, present and future of sensor technology and its emerging applications in a wide variety of different fields. Organized in five parts, the book covers historical context and future outlook of sensor technology development and emerging applications, the use of sensors throughout many applications in healthcare, health and life science research, public health and safety, discusses chemical sensors used in environmental monitoring and remediation of contaminants, highlights the use of sensors in food, agriculture, fire prevention, automotive and robotics, and more. Final sections look forward at the challenges that must be overcome in the development and use of sensing technology as well as their commercial use, making this book appropriate for the interdisciplinary community of researchers and practitioners interested in the development of sensor technologies. - Covers a range of environmental applications such as protection and improvement of water, air, soil, plants, and agriculture and food production; biomedical applications including detection of viruses, genes, hormones, proteins, bacteria, and cancer, and applications in construction such as fire protection, automotive, robotics, food packing and micro-machining - Provides an outlook on opportunities and challenges for the fabrication and manufacturing of sensors in industry and their applicability for industrial uses - Demonstrates how cutting-edge developments in sensing technology translate into real-world innovations in a range of industry sectors
As opposed to conventional electrochemical sensors, nanomaterials-based sensors are active and effective in their action with even a minute concentration of analyte. A number of research studies are bringing about an evolution in their development and advancement because of their unique and effective properties. Nanoscale electrochemical sensors have applications in almost every field of life including the detection of neurochemicals, heavy metals, energy components, body fluids, biological matrices, cancer relevant biomolecules, aromatic hydrocarbons, also in playing their role in food science because of their capability in providing quality control and safety. There is a need to develop these nanomaterials-based electrochemical sensors to be more widely available for accurate sensing of minute concentrations especially in the case of heavy metal detection, biofluids, and other biomaterials. This book outlines the major preparation, fabrication and manufacture of nanomaterials-based electrochemical sensors, as well as detailing their principle medical, environmental and industrial applications in an effort to meet this need.This book is a valuable reference source for materials scientists, engineers, electrochemists, environmental engineers and biomedical engineers who want to understand how nanomaterials-based electrochemical sensors are made, and how they are used. - Explains the techniques used for the fabrication and manufacture of nanomaterials-based electrochemical sensors - Discusses the major applications of nanomaterials-based electrochemical sensors in biomedicine and environmental science - Assesses the potential toxicity and other challenges associated with using nanomaterials-based electrochemical sensors
Fundamentals of Sensor Technology: Principles and Novel Designs presents an important reference on the materials, platforms, characterization and fabrication methods used in the development of chemical sensor technologies. Sections provide the historical context of sensor technology development, review principles for the design of sensing devices and circuits, delve into the most common chemical and biological sensor types, cover unique properties and performance requirements, discuss fabrication techniques, including defining critical parameters, modeling and simulation strategies, and present important materials categories used in sensing applications, such as nanomaterials, quantum dots, magnetic materials, and more.This book is appropriate for the interdisciplinary community of researchers and practitioners interested in the development of sensor technologies, including materials scientists and engineers, analytical chemists and other related disciplines. - Provides a comprehensive view of the latest advances in the design of chemical sensor materials, devices, and platforms - Reviews the most relevant nanosensor fabrication techniques for each sensor type, including critical parameters, modeling, simulation strategies and characterization methods - Discusses enhancement strategies for materials and devices to help improve physical, chemical and biological properties and enable practical applications
Nanosensors for Smart Manufacturing provides information on the fundamental design concepts and emerging applications of nanosensors in smart manufacturing processes. In smart production, if the products and machines are integrated, embedded, or equipped with sensors, the system can immediately collect the current operating parameters, predict the product quality, and then feed back the optimal parameters to machines in the production line. In this regard, smart sensors and their wireless networks are important components of smart manufacturing. Nanomaterials-based sensors (nanosensors) offer several advantages over their microscale counterparts, including lower power consumption, fast response time, high sensitivity, lower concentration of analytes, and smaller interaction distance between sensors and products. With the support of artificial intelligence (AI) tools such as fuzzy logic, genetic algorithms, neural networks, and ambient intelligence, sensor systems have become smarter. This is an important reference source for materials scientists and engineers who want to learn more about how nanoscale sensors can enhance smart manufacturing techniques and processes. - Outlines the smart nanosensor classes used in manufacturing applications - Shows how nanosensors are being used to make more efficient manufacturing systems - Assesses the major obstacles to designing nanosensor-based manufacturing systems at an industrial scale
Advanced Nanomaterials for Point of Care Diagnosis and Therapy provides an overview of technological and emerging novel trends in how point-of-care diagnostic devices are designed, miniaturized built, and delivered at different healthcare set ups. It describes the significant technological advances in fundamental diagnostic components and recent advances in fully integrated devices designed for specific clinical use. The book covers state-of-the-art fabrication of advances materials with broad spectrum therapeutic applications. It includes drug delivery, biosensing, bioimaging and targeting, and outlines the development of inexpensive, effective and portable in vitro diagnostics tools for any purpose that can be used onsite. Sections also discuss drug delivery, biosensing, bioimaging and targeting and various metal, metal oxide and non-metal-based nanomaterials that are developed, surface modified, and are being explored for diagnosis, targeting, drug delivery, drug release and imaging. The book concludes with current needs and future challenges in the field. Outlines the needs and challenges of point-of-care diagnostics Describes the fundamentals of application of nanomaterials as interesting building blocks for biosensing Overviews the different detection methods offered by using nanomaterials Explains the advantages and drawbacks of nanomaterial-based sensing strategies Describes the opportunities offered by technology as a cost-efficient biosensing platform
Silver Nanomaterials for Agri-Food Applications explores how silver-based nanomaterials are being used to create more efficient systems and products across the agri-food sector. In particular, the book covers silver nanomaterials as antimicrobial agents, in food science, for plant protection, and for water purification. Sections highlight the effect of silver nanoantimicrobials and drug synergism on drug-resistant pathogens, offer an overview of silver nanomaterials-based nanosensors in agri-food applications, explore the use of silver nanostructures in plant science applications, cover plant protection applications, describe silver nanomaterial applications in the removal of dyes and pesticides from wastewater, and more. - Explores the applications of silver-based nanomaterials for plant protection, water treatments, and in food science - Outlines why silver-based nanomaterials have properties that make them beneficial for protection against infectious diseases - Assesses the challenge of integrating silver-based nanomaterials into agricultural systems
Sensory Polymers: From their Design to Practical Applications discusses recent developments in the field of sensory polymers and showcases the potential applications of these materials in food control and security, civil security, the biomedical field, environmental control and remediation, industrial control of chemicals, and more. Written by worldwide experts in the field, chapters provide in-depth knowledge on several different polymer sensors and their response to different stimuli, which makes this book a valuable resource for researchers and advanced students in polymer science, materials science, and chemistry, as well as those interested on sensing applications and chemical sensory systems, including industry R&D. - Discusses the foundation of sensory polymers, from material design to development and production - Explores state-of-the-art applications in environmental control, biomedicine, sensing, the chemical industry, and food science - Provides perspectives and future applications of polymer chemosensors
Approx.296 pages - Focuses on integrative approaches of the enzyme nanoparticle synthesis and its applications on biomedicine, biosensors, and biocatalysis - Encloses the potential challenges and developments of enzyme incorporated nanoparticles - Discusses the vital activities of nanozymes in enzyme mimicking processes and prudent bio-catalytic efficiency - Covers the latest methods and procedures involved in enzyme-incorporated nanomaterials
The book "Technology in Forensic Science" provides an integrated approach by reviewing the usage of modern forensic tools as well as the methods for interpretation of the results. Starting with best practices on sample taking, the book then reviews analytical methods such as high-resolution microscopy and chromatography, biometric approaches, and advanced sensor technology as well as emerging technologies such as nanotechnology and taggant technology. It concludes with an outlook to emerging methods such as AI-based approaches to forensic investigations.