Download Free New Developments In Adsorption Separation Of Small Molecules By Zeolites Book in PDF and EPUB Free Download. You can read online New Developments In Adsorption Separation Of Small Molecules By Zeolites and write the review.

This volume compiles and discusses the fundamental and multidisciplinary knowledge on adsorption and separation processes using zeolites as adsorbents. Over the last decade, a large amount of research has been carried out for the development of zeolites as adsorbents. However, there is still a growing interest to increase the understanding of such selective adsorbents. Therefore, synthesis strategies and new approaches for developing new selective zeolite adsorbents for gas separation are presented in the first chapter. In addition, a chapter focused on adsorption characterization techniques of microporous materials is included. This will be helpful for advanced readers, since the new IUPAC recommendations for microporous characterization are not still widely employed by the zeolite community. Experimental and theoretical aspects of economically and environmentally relevant separations, which have been successfully carried out with zeolites, are discussed in detail in subsequent chapters. Finally, industrial zeolite based adsorption and separation processes as well as current perspectives for new zeolite based separations, and improvements of current technologies are presented.
A cohesive and insightful compilation of resources explaining the latest discoveries and methods in the field of nanoporous materials In Artificial Intelligence for Zeolites and Nanoporous Materials: Design, Synthesis and Properties Prediction a team of distinguished researchers delivers a robust compilation of the latest knowledge and most recent developments in computational chemistry, synthetic chemistry, and artificial intelligence as it applies to zeolites, porous molecular materials, covalent organic frameworks and metal-organic frameworks. The book presents a common language that unifies these fields of research and advances the discovery of new nanoporous materials. The editors have included resources that describe strategies to synthesize new nanoporous materials, construct databases of materials, structure directing agents, and synthesis conditions, and explain computational methods to generate new materials. They also offer material that discusses AI and machine learning algorithms, as well as other, similar approaches to the field. Readers will also find a comprehensive approach to artificial intelligence applied to and written in the language of materials chemistry, guiding the reader through the fundamental questions on how far computer algorithms and numerical representations can drive our search of new nanoporous materials for specific applications. Designed for academic researchers and industry professionals with an interest in synthetic nanoporous materials chemistry, Artificial Intelligence for Zeolites and Nanoporous Materials: Design, Synthesis and Properties Prediction will also earn a place in the libraries of professionals working in large energy, chemical, and biochemical companies with responsibilities related to the design of new nanoporous materials.
Many elements and inorganic compounds play an extraordinary role in daily life for numerous applications, e. g., construction materials, inorganic pigments, inorganic coatings, steel, glass, technical gases, energy storage and conversion materials, fertilizers, homogeneous and heterogeneous catalysts, photofunctional materials, semiconductors, superconductors, soft- and hard magnets, technical ceramics, hard materials, or biomedical and bioactive materials. The present book is written by experienced authors who give a comprehensive overview on the many chemical and physico-chemical aspects related to application of inorganic compounds and materials in order to introduce senior undergraduate and postgraduate students (chemists, physicists, materials scientists, engineers) into this broad field.
Volume 1 of the book discusses such topics as absorption, chromatography, crystallization, microcapsules, adsubble methods, chemical complexing, parametric pumping, molecular sieve adsorption, enzyme membrane systems, immobilized solvent membranes and liquid surfactant membranes.
The Handbook of Zeolite Science and Technology offers effective analyses ofsalient cases selected expressly for their relevance to current and prospective research. Presenting the principal theoretical and experimental underpinnings of zeolites, this international effort is at once complete and forward-looking, combining fundamental
Current Trends and Future Developments on (Bio-) Membranes: Microporous Membrane and Membrane Reactors focuses on the structure, preparation, characterization and applications of microporous membranes and membrane reactors, including transport mechanisms through a range of microporous membranes. It is a key reference text for R&D managers who are interested in the development of gas separation and water/waste treatment technologies, but is also well-suited for academic researchers and postgraduate students working in the broader area of strategic material production, separation and purification. Users will find comprehensive coverage of current methods, their characterization and properties, and various applications in gas separation and water treatment. - Reviews gas separation and water treatment processes and relates them to various applications - Outlines the use of microporous membranes in gas separations and water treatment - Introduces the various types of microporous membranes (graphene, polymeric, etc.) and their mechanism of action - Provides simulation models of the various processes
Adsorption promises to play an integral role in several future energy and environmental technologies, including hydrogen storage, CO removal for fuel cell technology, desulfurization of transportation fuels, and technologies for meeting higher standards on air and water pollutants. Ralph Yang's Adsorbents provides a single and comprehensive source of knowledge for all commercial and new sorbent materials, presenting the fundamental principles for their syntheses, their adsorption properties, and their present and potential applications for separation and purification. Chapter topics in this authoritative, forward-looking volume include: - Formulas for calculating the basic forces or potentials for adsorption - Calculation of pore-size distribution from a single adsorption isotherm - Rules for sorbent selection - Fundamental principles for syntheses/preparation, adsorption properties, and applications of commercially available sorbents - Mesoporous molecular sieves and zeolites - ̧-complexation sorbents and their applications - Carbon nanotubes, pillared clays, and polymeric resins Yang covers the explosion in the development of new nanoporous materials thoroughly, as the adsorption properties of some of these materials have remained largely unexplored. The whole of this book benefits from the new adsorbent designs made possible by the increase in desktop computing and molecular simulation, making Adsorbents useful to both practicing laboratories and graduate programs. Ralph Yang's comprehensive study contributes significantly to the resolution of separation and purification problems by adsorption technologies.
This thematic volume of Advances in Chemical Engineering presents the latest advances in the exciting interdisciplinary field of nanostructured materials. Written by chemical engineers, chemists, physicists, materials scientists, and bioengineers, this volume focuses on the molecular engineering of materials at the nanometer scale for unique size-dependent properties. It describes a "bottom-up" approach to designing nanostructured systems for a variety of chemical, physical, and biological applications.
Volume I contains a brief review of adsorption history and its development for practical purposes up until now. It also presents some important information on adsorbents and catalysts as well as on the methods of their characterization. The part of this volume dealing with practical industrial applications includes chapters presenting advanced technical tools for high capacity adsorption separation of liquid and gas mixtures, development of new adsorbents for removal of hazardous contaminants from combustion flue gases and wastewaters, degasification of coal seams and fabrication of inorganic membranes and their applications. A comprehensive review is also included on contemporary utility of self-assembled monolayers, adsorption proteins and their role in modern industry, adsorption methods in technology of optical fibre glasses, sol-gel technology, solid desiccant dehumidification systems, etc. The articles give both the scientific backgrounds of the phenomena discussed and emphasize their practical aspects.The chapters give not only brief current knowledge about the studied problems, but are also a source of topical literature on the subject. A comprehensive bibliography on adsorption principles, design data and adsorbent materials for industrial applications for the period 1967-1997 concludes the book.
Zeolites and Zeolite-like Materials offers a comprehensive and up-to-date review of the important areas of zeolite synthesis, characterization, and applications. Its chapters are written in an educational, easy-to-understand format for a generation of young zeolite chemists, especially those who are just starting research on the topic and need a reference that not only reflects the current state of zeolite research, but also identifies gaps and opportunities. The book demonstrates various applications of zeolites in heterogeneous catalysis and biomass conversion and identifies the endless possibilities that exist for this class of materials, their structures, functions, and future applications. In addition, it demonstrates that zeolite-like materials should be regarded as a living body developing towards new modern applications, thereby responding to the needs of modern technology challenges, including biomass conversion, medicine, laser techniques, and nanomaterial design, etc. The book will be of interest not only to zeolite-focused researchers, but also to a broad scientific and non-scientific audience. - Provides a comprehensive review of the literature pertaining to zeolites and zeolite-like materials since 2000 - Covers the chemistry of novel zeolite-like materials such as Metal-Organic Frameworks (MOFs), Covalent Organic Frameworks (COFs), hierarchical zeolite materials, new mesoporous and composite zeolite-like micro/mesoporous materials - Presents essential information of the new zeolite-like structures, with a balanced coverage of the most important areas of the zeolite research (synthesis, characterization, adsorption, catalysis, new applications of zeolites and zeolite-like materials) - Contains chapters prepared by known specialists who are members of the International Zeolite Association