Download Free New Approaches For The Generation And Analysis Of Microbial Typing Data Book in PDF and EPUB Free Download. You can read online New Approaches For The Generation And Analysis Of Microbial Typing Data and write the review.

Rapid molecular identification and typing of micro-organisms is extremely important in efforts to monitor the geographical spread of virulent, epidemic or antibiotic-resistant pathogens. It has become a mainstay of integrated hospital infection control service. In addition, numerous industrial and biotechnological applications require the study of the diversity of organisms. Conventional phenotypic identification and typing methods have long been the mainstay of microbial population and epidemiological studies, but such methods often lack adequate discrimination and their use is normally confined to the group of organisms for which they were originally devised. Molecular fingerprinting methods have flourished in recent years and many of these new methods can be applied to numerous different organisms for a variety of purposes. Standardisation of these methods is vitally important. In addition, the generation of large numbers of complex fingerprint profiles requires that a computer-assisted strategy is used for the formation and analysis of databases. The purpose of this book is to describe the best fingerprinting methods that are currently available and the computer-assisted strategies that can be used for analysis and exchange of data between laboratories. This book is dedicated to the memory of Jan Ursing (1926 - 2000), Swedish microbiologist, taxonomist and philosopher. "...taxonomy is on the borders of philosophy because we do not know the natural continuities and discontinuities..."
Laboratory Techniques in Plant Bacteriology is ideal for scientists and students who seek a career in plant pathogenic bacteria. This book contains 41 chapters comprising practicable techniques from isolation of bacterial plant pathogens to their identification up to species and race/biotype level. It includes identification protocols of morphological, biochemical, immunological, and molecular-based techniques. This book comprises all technological aspects of plant bacteriological studies. Its content is ideal for graduate students and research scholars including bacteriological professionals or technicians. The book ultimately provides working technologies useful for controlling bacterial disease pathogens.
A question raised by many individuals today – “How Safe is Our Food Consumed Today?” Food safety has become a hot topic and an important public issue due to the increasingly widespread nature of foodborne illnesses in both developed and developing countries. As food is biological in nature and supplies consumers with nutrients, it is also equally capable of supporting the growth of microorganisms from the environmental sources. A precise method of monitoring and detecting of foodborne pathogens including Salmonella sp., Vibrio sp., Listeria monocytogenes, Campylobacter and Norovirus is needed to prevent and control human foodborne infections. Clinical treatments of infection caused by foodborne pathogens are becoming tougher with the increase number of multidrug resistant pathogens in the environment. This situation creates a huge healthcare burden – e.g. prolonged treatment for infections, decrease in the efficacy of antibiotic, delay in treatment due to unavailability of new antibiotics, and increased number of deaths. As such, continuous investigation of the foodborne pathogens is needed to pave the way for a deeper understanding on the foodborne diseases and to improve disease prevention, management and treatments.
Wastewater Treatment: Molecular Tools, Techniques, and Applications provides an insight about the application of different tools and technology for exploring microbial structure-function relationships that involved in WWTPs. From the present day consequence of alarming usable water crysis throughout the globe, an immediate action on water cycle is necessary. Along with other options the waste water recycling is one major opportunity to combat the future scarcity. The book aims to provide a comprehensive view of advanced emerging technologies for wastewater treatment, heavy metal removal, pesticide degradation, dye removal, waste management, microbial transformation of environmental contaminants, etc. It also describes different application of Omic tools in Waste water treatment plants (WWTPs),describes the role of microorganisms in WWTPs, points out the reuse of treated wastewater through emerging technologies, also includes the recovery of resources from wastewater and emphasizes on cutting edge molecular tools for WWTPs. We hope the content of the book will be very much usefull for the community who are directly associated in wastewater management research, people who are associated with environmental awarness programme and the students of UG and PG courses. Features: This book highlights the importance of molecular genomics, molecular biology techniques to sort out the problems faced by industrialist who operates wastewater treatment plant with the ever-increasing number of environmental pollutants. Describes application of different Omic tools in Wastewater treatment plants (WWTPs) Describes the role of microorganisms in WWTPs Points out the reuse of treated wastewater through emerging technologies. Includes the recovery of resources from wastewater Emphasizes on cutting edge molecular tools This book targets engineers, scientists and managers who require an excellent introduction and basic knowledge to the principles of molecular biology or molecular genomics in the area of wastewater treatment. Different professionals working or interested in the Environmental Microbiology or Bioremediation or Environmental Genomics field. Students on Environmental Biotechnology/Microbiology.
Diagnostic Molecular Biology, Second Edition describes the fundamentals of molecular biology in a clear, concise manner with each technique explained within its conceptual framework and current applications of clinical laboratory techniques comprehensively covered. This targeted approach covers the principles of molecular biology, including basic knowledge of nucleic acids, proteins and chromosomes; the basic techniques and instrumentations commonly used in the field of molecular biology, including detailed procedures and explanations; and the applications of the principles and techniques currently employed in the clinical laboratory. Topics such as whole exome sequencing, whole genome sequencing, RNA-seq, and ChIP-seq round out the discussion. Fully updated, this new edition adds recent advances in the detection of respiratory virus infections in humans, like influenza, RSV, hAdV, hRV but also corona. This book expands the discussion on NGS application and its role in future precision medicine. - Provides explanations on how techniques are used to diagnosis at the molecular level - Explains how to use information technology to communicate and assess results in the lab - Enhances our understanding of fundamental molecular biology and places techniques in context - Places protocols into context with practical applications - Includes extra chapters on respiratory viruses (Corona)
Pathogenic Escherichia coli strains cause a large number of diseases in humans, including diarrhea, hemorrhagic colitis, hemolytic uremic syndrome, urinary tract infections, and neonatal meningitis, while in animals they cause diseases such as calf scours and mastitis in cattle, post-weaning diarrhea and edema disease in pigs, and peritonitis and airsacculitis in chickens. The different E. coli pathotypes are characterized by the presence of specific sets of virulence-related genes. Therefore, it is not surprising that pathogenic E. coli constitutes a genetically heterogeneous family of bacteria, and they are continuing to evolve. Rapid and accurate molecular methods are critically needed to detect and trace pathogenic E. coli in food and animals. They are also needed for epidemiological investigations to enhance food safety, as well as animal and human health and to minimize the size and geographical extent of outbreaks. The serotype of E. coli strains has traditionally been determined using antisera raised against the >180 different O- (somatic) and 53 H- (flagellar) antigens. However, there are many problems associated with serotyping, including: it is labor-intensive and time consuming; cross reactivity of the antisera with different serogroups occurs; antisera are available only in specialized laboratories; and many strains are non-typeable. Molecular serotyping targeting O-group-specific genes within the E. coli O-antigen gene clusters and genes that are involved in encoding for the different flagellar types offers an improved approach for determining the E. coliO- and H-groups. Furthermore, molecular serotyping can be coupled with determination of specific sets of virulence genes carried by the strain offering the possibility to determine O-group, pathotype, and the pathogenic potential simultaneously. Sequencing of the O-antigen gene clusters of all of the known O-groups of E. coli is now complete, and the sequences have been deposited in the GenBank database. The sequence information has revealed that some E. coli serogroups have identical sequences while others have point mutations or insertion sequences and type as different serogroups in serological reactions. There are also a number of other ambiguities in serotyping that need to be resolved. Furthermore, new E. coli O-groups are being identified. Therefore, there is an essential need to resolve these issues and to revise the E. coli serotype nomenclature based on these findings. There are emerging technologies that can potentially be applied for molecular serotyping and detection and characterization of E. coli. On a related topic, the genome sequence of thousands of E. coli strains have been deposited in GenBank, and this information is revealing unique markers such as CRISPR (clustered regularly interspaced short palindromic repeats) and virulence gene markers that could be used to identify E. coli pathotypes. Whole genome sequencing now provides the opportunity to study the role of horizontal gene transfer in the evolution and emergence of pathogenic E. coli strains. Whole genome sequencing approaches are being investigated for genotyping and outbreak investigation for regulatory and public health needs; however, there is a need for establishing bioinformatics pipelines able to handle large amounts of data as we move toward the use of genetic approaches for non-culture-based detection and characterization of E. coli and for outbreak investigations.
The Manual of Commercial Methods in Clinical Microbiology 2nd Edition, International Edition reviews in detail the current state of the art in each of the disciplines of clinical microbiology, and reviews the sensitivities, specificities and predictive values, and subsequently the effectiveness, of commercially available methods – both manual and automated. This text allows the user to easily summarize the available methods in any particular field, or for a specific pathogen – for example, what to use for an Influenza test, a Legionella test, or what instrument to use for identification or for an antibiotic susceptibility test. The Manual of Commercial Methods in Clinical Microbiology, 2nd Edition, International Edition presents a wealth of relevant information to clinical pathologists, directors and supervisors of clinical microbiology, infectious disease physicians, point-of-care laboratories, professionals using industrial applications of diagnostic microbiology and other healthcare providers. The content will allow professionals to analyze all commercially available methods to determine which works best in their particular laboratory, hospital, clinic, or setting. Updated to appeal to an international audience, The Manual of Commercial Methods in Clinical Microbiology, 2nd Edition, International Edition is an invaluable reference to those in the health science and medical fields.