Download Free Neutrosophic Precalculus And Neutrosophic Calculus Book in PDF and EPUB Free Download. You can read online Neutrosophic Precalculus And Neutrosophic Calculus and write the review.

Neutrosophic Analysis is a generalization of Set Analysis, which in its turn is a generalization of Interval Analysis. Neutrosophic Precalculus is referred to indeterminate staticity, while Neutrosophic Calculus is the mathematics of indeterminate change. The Neutrosophic Precalculus and Neutrosophic Calculus can be developed in many ways, depending on the types of indeterminacy one has and on the methods used to deal with such indeterminacy. In this book, the author presents a few examples of indeterminacies and several methods to deal with these specific indeterminacies, but many other indeterminacies there exist in our everyday life, and they have to be studied and resolved using similar of different methods. Therefore, more research should to be done in the field of neutrosophics. The author introduces for the first time the notions of neutrosophic mereo-limit, neutrosophic mereo-continuity (in a different way from the classical semi-continuity), neutrosophic mereo-derivative and neutrosophic mereo-integral (both in different ways from the fractional calculus), besides the classical definitions of limit, continuity, derivative, and integral respectively. Future research may be done in the neutrosophic fractional calculus. It means that in neutrosophic calculus there are limits, continuity, derivatives, and integrals that are not complete, i.e. there are neutrosophic functions that at a given point may have a degree of a limit (not 100%) called mereo-limit, or may be continuous in a certain degree (not 100%) called mereo-continuity, or may be differentiable or integrable in a certain degree (not 100%) called mereo-derivatives and respectively mereo-integrals. These occur because of indeterminacies...
International Journal of Neutrosophic Science (IJNS) is a peer-review journal publishing high quality experimental and theoretical research in all areas of Neutrosophic and its Applications. Papers concern with neutrosophic logic and mathematical structures in the neutrosophic setting. Besides providing emphasis on topics like artificial intelligence, pattern recognition, image processing, robotics, decision making, data analysis, data mining, applications of neutrosophic mathematical theories contributions to economics, finance, management, industries, electronics, and communications are promoted.
This volume is a collection of seventeen papers, written by different authors and co-authors (listed in the order of the papers): F. Smarandache, K. Bhutani, M. Kumar, G. Garg, S. Aggarwal, P. Biswas, S. Pramanik, B. C. Giri, J. Ye, A. Mukherjee, M. Datta, S. Sarkar, N. Shah, M. K. EL Gayyar, S. K. Patro, B. C. Cuong, P. H. Phong, A. A. Salama, I. M. Hanafy, H. Elghawalby and M. S. Dabash, R. Roy, P. Das, D. Mandal, Santhi R., Udhayarani N., F. Yuhua, S. A. Akinleye, A.A.A. Agboola, and J. Chen.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
In this chapter, the goal programming in neutrosophic environment is introduced. The degree of acceptance, indeterminacy and rejection of objectives is considered simultaneous.
In this paper one introduces for the first time the IndetermSoft Set, as extension of the classical (determinate) Soft Set, that deals with indeterminate data, and similarly the HyperSoft Set extended to IndetermHyperSoft Set, where ‘Indeterm’ stands for ‘Indeterminate’ (uncertain, conflicting, not unique outcome). They are built on an IndetermSoft Algebra that is an algebra dealing with IndetermSoft Operators resulted from our real world. Afterwards, the corresponding Fuzzy / Intuitionistic Fuzzy / Neutrosophic / and other fuzzy-extension IndetermSoft Set & IndetermHyperSoft Set are presented together with their applications.
Papers on neutrosophic statistics, neutrosophic probability, plithogenic set, paradoxism, neutrosophic set, NeutroAlgebra, etc. and their applications.
This book treats all kind of data in neutrosophic environment, with real-life applications, approaching topics as linear programming problem, linear fractional programming, integer programming, triangular neutrosophic numbers, single valued triangular neutrosophic number, neutrosophic optimization, goal programming problem, Taylor series, multi-objective programming problem, neutrosophic geometric programming, neutrosophic topology, neutrosophic open set, neutrosophic semi-open set, neutrosophic continuous function, cylindrical skin plate design, neutrosophic MULTIMOORA, alternative solutions, decision matrix, ratio system, reference point method, full multiplicative form, ordinal dominance, standard error, market research, and so on. The selected papers deal with the alleviation of world changes, including changing demographics, accelerating globalization, rising environmental concerns, evolving societal relationships, growing ethical and governance concern, expanding the impact of technology; some of these changes have impacted negatively the economic growth of private firms, governments, communities, and the whole society.
This thirteenth volume of Collected Papers is an eclectic tome of 88 papers in various fields of sciences, such as astronomy, biology, calculus, economics, education and administration, game theory, geometry, graph theory, information fusion, decision making, instantaneous physics, quantum physics, neutrosophic logic and set, non-Euclidean geometry, number theory, paradoxes, philosophy of science, scientific research methods, statistics, and others, structured in 17 chapters (Neutrosophic Theory and Applications; Neutrosophic Algebra; Fuzzy Soft Sets; Neutrosophic Sets; Hypersoft Sets; Neutrosophic Semigroups; Neutrosophic Graphs; Superhypergraphs; Plithogeny; Information Fusion; Statistics; Decision Making; Extenics; Instantaneous Physics; Paradoxism; Mathematica; Miscellanea), comprising 965 pages, published between 2005-2022 in different scientific journals, by the author alone or in collaboration with the following 110 co-authors (alphabetically ordered) from 26 countries: Abduallah Gamal, Sania Afzal, Firoz Ahmad, Muhammad Akram, Sheriful Alam, Ali Hamza, Ali H. M. Al-Obaidi, Madeleine Al-Tahan, Assia Bakali, Atiqe Ur Rahman, Sukanto Bhattacharya, Bilal Hadjadji, Robert N. Boyd, Willem K.M. Brauers, Umit Cali, Youcef Chibani, Victor Christianto, Chunxin Bo, Shyamal Dalapati, Mario Dalcín, Arup Kumar Das, Elham Davneshvar, Bijan Davvaz, Irfan Deli, Muhammet Deveci, Mamouni Dhar, R. Dhavaseelan, Balasubramanian Elavarasan, Sara Farooq, Haipeng Wang, Ugur Halden, Le Hoang Son, Hongnian Yu, Qays Hatem Imran, Mayas Ismail, Saeid Jafari, Jun Ye, Ilanthenral Kandasamy, W.B. Vasantha Kandasamy, Darjan Karabašević, Abdullah Kargın, Vasilios N. Katsikis, Nour Eldeen M. Khalifa, Madad Khan, M. Khoshnevisan, Tapan Kumar Roy, Pinaki Majumdar, Sreepurna Malakar, Masoud Ghods, Minghao Hu, Mingming Chen, Mohamed Abdel-Basset, Mohamed Talea, Mohammad Hamidi, Mohamed Loey, Mihnea Alexandru Moisescu, Muhammad Ihsan, Muhammad Saeed, Muhammad Shabir, Mumtaz Ali, Muzzamal Sitara, Nassim Abbas, Munazza Naz, Giorgio Nordo, Mani Parimala, Ion Pătrașcu, Gabrijela Popović, K. Porselvi, Surapati Pramanik, D. Preethi, Qiang Guo, Riad K. Al-Hamido, Zahra Rostami, Said Broumi, Saima Anis, Muzafer Saračević, Ganeshsree Selvachandran, Selvaraj Ganesan, Shammya Shananda Saha, Marayanagaraj Shanmugapriya, Songtao Shao, Sori Tjandrah Simbolon, Florentin Smarandache, Predrag S. Stanimirović, Dragiša Stanujkić, Raman Sundareswaran, Mehmet Șahin, Ovidiu-Ilie Șandru, Abdulkadir Șengür, Mohamed Talea, Ferhat Taș, Selçuk Topal, Alptekin Ulutaș, Ramalingam Udhayakumar, Yunita Umniyati, J. Vimala, Luige Vlădăreanu, Ştefan Vlăduţescu, Yaman Akbulut, Yanhui Guo, Yong Deng, You He, Young Bae Jun, Wangtao Yuan, Rong Xia, Xiaohong Zhang, Edmundas Kazimieras Zavadskas, Zayen Azzouz Omar, Xiaohong Zhang, Zhirou Ma.
In this chapter, Taylor series is used to solve neutrosophic multiobjective programming problem (NMOPP). In the proposed approach, the truth membership, indeterminacy membership, falsity membership functions associated with each objective of multiobjective programming problems are transformed into a single objective linear programming problem by using a first order Taylor polynomial series. Finally, to illustrate the efficiency of the proposed method, a numerical experiment for supplier selection is given as an application of Taylor series method for solving neutrosophic multi-objective programming problem.