Download Free Neutrosophic Ahp Multi Criteria Decision Making Method Applied On The Selection Of Learning Management System Book in PDF and EPUB Free Download. You can read online Neutrosophic Ahp Multi Criteria Decision Making Method Applied On The Selection Of Learning Management System and write the review.

Learning management systems (LMSs) are used today to assist in the designing, delivery and management of learning resources for learners. There are hundreds of LMS available in the marketplace. Selecting the most suitable LMS that meets specific requirements is a problem of decision making. Many studies in learning management system selection are implemented under complete information, while in the real world many uncertainty aspects do exist.
This paper proposes a multi-criteria decision making method called the neutrosophic data analytical hierarchy process (NDAHP) for the single-valued neutrosophic set (SVNS). This method is an extension of the neutrosophic analytic hierarchy process (NAHP) but was designed to handle actual datasets which consists of crisp values. Our proposed NDAHP method uses an objective weighting mechanism whereas all other existing versions of the AHP, fuzzy AHP and other fuzzy based AHP method in literature such as the NAHP and picture fuzzy AHP uses a subjective weighting mechanism to arrive at the decision. This makes our proposed NDAHP method a very objective one as the weightage of the criteria which forms the input of the evaluation matrix are determined in an objective manner using actual data collected for the problem, and hence will not change according to the opinions of the different decision makers which are subjective. The proposed NDAHP method is applied to a multi-criteria decision making problem related to the ranking of the financial performance of five public listed petrochemical companies trading in the main board of the Kuala Lumpur Stock Exchange (KLSE). Actual dataset of 15 financial indices for the five petrochemical companies for 2017 obtained from Yahoo! Finance were used in this study. Following this, a brief comparative study is conducted to evaluate the performance of our NDAHP algorithm against the results of other existing SVNS based decision making methods in literature. The results are compared against actual results obtained from KLSE. To further verify the rankings obtained through each method, the Spearman and Pearson ranking tests are carried out on each of the decision making methods that are studied. It is proved that our proposed NDAHP method produces the most accurate results, and this was further verified from the results of the Spearman and Pearson ranking tests.
This book offers a comprehensive guide to the use of neutrosophic sets in multiple criteria decision making problems. It shows how neutrosophic sets, which have been developed as an extension of fuzzy and paraconsistent logic, can help in dealing with certain types of uncertainty that classical methods could not cope with. The chapters, written by well-known researchers, report on cutting-edge methodologies they have been developing and testing on a variety of engineering problems. The book is unique in its kind as it reports for the first time and in a comprehensive manner on the joint use of neutrosophic sets together with existing decision making methods to solve multi-criteria decision-making problems, as well as other engineering problems that are complex, hard to model and/or include incomplete and vague data. By providing new ideas, suggestions and directions for the solution of complex problems in engineering and decision making, it represents an excellent guide for researchers, lecturers and postgraduate students pursuing research on neutrosophic decision making, and more in general in the area of industrial and management engineering.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope of neutralities, as well as their interactions with different ideational spectra. This theory considers every notion or idea together with its opposite or negation and with their spectrum of neutralities in between them (i.e. notions or ideas supporting neither nor ). The and ideas together are referred to as . Neutrosophy is a generalization of Hegel's dialectics (the last one is based on and only). According to this theory every idea tends to be neutralized and balanced by and ideas - as a state of equilibrium. In a classical way , , are disjoint two by two. But, since in many cases the borders between notions are vague, imprecise, Sorites, it is possible that , , (and of course) have common parts two by two, or even all three of them as well. Neutrosophic Set and Neutrosophic Logic are generalizations of the fuzzy set and respectively fuzzy logic (especially of intuitionistic fuzzy set and respectively intuitionistic fuzzy logic).
The present paper proposes a neutrosophic AHP completion methodology to reduce the number of judgments required to be emitted by the decision maker. This increases the consistency of their responses, while accounting for uncertainties associated to the fuzziness of human thinking. The method is applied to a sustainable-design problem, resulting in weight estimations that allow for a reduction of up to 22% of the conventionally required comparisons, with an average accuracy below 10% between estimates and the weights resulting from a conventionally completed AHP matrix, and a root mean standard error below 15%.
Multi-Criteria Decision-Making (MCDM) includes methods and tools for modeling and solving complex problems. MCDM has become popular in the production and service sectors to improve the quality of service, reduce costs, and make people more prosperous. This book illustrates applications through case studies focused on disaster management. With a presentation of both Multi-Attribute Decision-Making (MADM) and Multi-Objective Decision-Making (MODM) models, this is the first book to merge these methods and tools with disaster management. This book raises awareness for society and decision-makers on how to measure readiness and what necessary preventive measures need to be taken. It offers models and case studies that can be easily adapted to solve complex problems and find solutions in other fields. Multi-Criteria Decision Analysis: Case Studies in Disaster Management will offer new insights to researchers working in the areas of industrial engineering, systems engineering, healthcare systems, operations research, mathematics, business, computer science, and disaster management, and, hopefully, the book will also stimulate further work in MCDM.
This seventh volume of Collected Papers includes 70 papers comprising 974 pages on (theoretic and applied) neutrosophics, written between 2013-2021 by the author alone or in collaboration with the following 122 co-authors from 22 countries: Mohamed Abdel-Basset, Abdel-Nasser Hussian, C. Alexander, Mumtaz Ali, Yaman Akbulut, Amir Abdullah, Amira S. Ashour, Assia Bakali, Kousik Bhattacharya, Kainat Bibi, R. N. Boyd, Ümit Budak, Lulu Cai, Cenap Özel, Chang Su Kim, Victor Christianto, Chunlai Du, Chunxin Bo, Rituparna Chutia, Cu Nguyen Giap, Dao The Son, Vinayak Devvrat, Arindam Dey, Partha Pratim Dey, Fahad Alsharari, Feng Yongfei, S. Ganesan, Shivam Ghildiyal, Bibhas C. Giri, Masooma Raza Hashmi, Ahmed Refaat Hawas, Hoang Viet Long, Le Hoang Son, Hongbo Wang, Hongnian Yu, Mihaiela Iliescu, Saeid Jafari, Temitope Gbolahan Jaiyeola, Naeem Jan, R. Jeevitha, Jun Ye, Anup Khan, Madad Khan, Salma Khan, Ilanthenral Kandasamy, W.B. Vasantha Kandasamy, Darjan Karabašević, Kifayat Ullah, Kishore Kumar P.K., Sujit Kumar De, Prasun Kumar Nayak, Malayalan Lathamaheswari, Luong Thi Hong Lan, Anam Luqman, Luu Quoc Dat, Tahir Mahmood, Hafsa M. Malik, Nivetha Martin, Mai Mohamed, Parimala Mani, Mingcong Deng, Mohammed A. Al Shumrani, Mohammad Hamidi, Mohamed Talea, Kalyan Mondal, Muhammad Akram, Muhammad Gulistan, Farshid Mofidnakhaei, Muhammad Shoaib, Muhammad Riaz, Karthika Muthusamy, Nabeela Ishfaq, Deivanayagampillai Nagarajan, Sumera Naz, Nguyen Dinh Hoa, Nguyen Tho Thong, Nguyen Xuan Thao, Noor ul Amin, Dragan Pamučar, Gabrijela Popović, S. Krishna Prabha, Surapati Pramanik, Priya R, Qiaoyan Li, Yaser Saber, Said Broumi, Saima Anis, Saleem Abdullah, Ganeshsree Selvachandran, Abdulkadir Sengür, Seyed Ahmad Edalatpanah, Shahbaz Ali, Shahzaib Ashraf, Shouzhen Zeng, Shio Gai Quek, Shuangwu Zhu, Shumaiza, Sidra Sayed, Sohail Iqbal, Songtao Shao, Sundas Shahzadi, Dragiša Stanujkić, Željko Stević, Udhayakumar Ramalingam, Zunaira Rashid, Hossein Rashmanlou, Rajkumar Verma, Luige Vlădăreanu, Victor Vlădăreanu, Desmond Jun Yi Tey, Selçuk Topal, Naveed Yaqoob, Yanhui Guo, Yee Fei Gan, Yingcang Ma, Young Bae Jun, Yuping Lai, Hafiz Abdul Wahab, Wei Yang, Xiaohong Zhang, Edmundas Kazimieras Zavadskas, Lemnaouar Zedam.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. In this issue: On Neutrosophic Crisp Sets and Neutrosophic Crisp Mathematical Morphology, New Results on Pythagorean Neutrosophic Open Sets in Pythagorean Neutrosophic Topological Spaces, Comparative Mathematical Model for Predicting of Financial Loans Default using Altman Z-Score and Neutrosophic AHP Methods.
This paper proposes a methodology for the assessment of the sustainability among three different structural design alternatives for a single-family home. The response associated with each alternative has been measured using 43 indicators considering all stages of the life cycle. A decision-making model is carried out on the basis of a neutrosophic group analytical hierarchy process (NAHP-G) capturing the maximum information in terms of credibility, inconsistency and indetermination.
We present a neutrosophic set-based model for a time-dependent decision-support system (DSS) with multiattribute criteria decision-making.We describe such DSS as one that includes multiple conflicting objectives having strategies spanning over several time-periods. In this paper, we utilize the concept of neutrosophic sets and some of its operations to present a computational model that captures decision trees with various imprecise preferences for a time-dependent DSS.