Download Free Neutron Scattering Studies Of The Magnetic Excitations In Cr Hofe2 And Cr095v005 And Antiferromagnetism In Ti Book in PDF and EPUB Free Download. You can read online Neutron Scattering Studies Of The Magnetic Excitations In Cr Hofe2 And Cr095v005 And Antiferromagnetism In Ti and write the review.

Neutron Scattering from Magnetic Materials is a comprehensive account of the present state of the art in the use of the neutron scattering for the study of magnetic materials. The chapters have been written by well-known researchers who are at the forefront of this field and have contributed directly to the development of the techniques described. Neutron scattering probes magnetic phenomena directly. The generalized magnetic susceptibility, which can be expressed as a function of wave vector and energy, contains all the information there is to know about the statics and dynamics of a magnetic system and this quantity is directly related to the neutron scattering cross section. Polarized neutron scattering techniques raise the sophistication of measurements to even greater levels and gives additional information in many cases. The present book is largely devoted to the application of polarized neutron scattering to the study of magnetic materials. It will be of particular interest to graduate students and researchers who plan to investigate magnetic materials using neutron scattering.· Written by a group of scientist who have contributed directly in developing the techniques described.· A complete treatment of the polarized neutron scattering not available in literature.· Gives practical hits to solve magnetic structure and determine exchange interactions in magnetic solids.· Application of neutron scattering to the study of the novel electronic materials.
This book studies the structural, magnetic and electronic properties of, as well as magnetic excitations in, high-temperature BaFe2-xNixAs2 superconductors using neutron diffraction and neutron spectroscopic methods. It describes the precise determination of the phase diagram of BaFe2-xNixAs2, which demonstrates strong magnetoelastic coupling and avoided quantum criticality driven by short-range incommensurate antiferromagnetic order, showing cluster spin glass behavior. It also identifies strong nematic spin correlations in the tetragonal state of uniaxial strained BaFe2-xNixAs2. The nematic correlations have similar temperature and doping dependence as resistivity anisotropy in detwinned samples, which suggests that they are intimately connected. Lastly, it investigates doping evolution of magnetic excitations in overdoped BaFe2-xNixAs2 and discusses the links with superconductivity. This book includes detailed neutron scattering results on BaFe2-xNixAs2 and an introduction to neutron scattering techniques, making it a useful guide for readers pursuing related research.
Understanding and manipulating the properties of materials naturally occurring in our world and artificially produced by modern technologies requires detailed information on their properties on the atomic scale. This information is the basis for any kind of research in physics, chemistry, biology, engineering, metallurgy, and ceramics. Among the various experimental methods, neutron and photon scattering have become the key techniques of choice.This book provides an overview of the complementarity between neutron and synchrotron x-ray scattering. The most important topics are covered, including structure determination, magnetic correlations, polymer dynamics, thin films and multilayers, photoemission studies, etc; they are thoroughly introduced and discussed by experts from both the experimental and the theoretical side.
The proceedings provide a topical survey of the static and dynamical magnetic properties of condensed matter studied by neutron scattering which has been the key technique in this field for a long time. The static aspects deal with the determination of long-range ordered spin structures and magnetization densities. The dynamic aspects concentrate on the determination of magnetic excitations such as spin waves and crystal-field transitions. The use of polarized-neutron techniques is particularly emphasized. All these topics are thoroughly introduced, methodically discussed, and highlighted with recent experimental results obtained for a vast variety of magnetic materials (e.g., strongly correlated electron systems, multilayers, nanocrystals, molecular complexes, etc.) by acknowledged experts. Other experimental methods (x-ray scattering, muon spin rotation) in the study of magnetism are compared to neutron scattering.
The inter action between the magnetic field generated by the neutron and the magnetic moment of atoms containing unpaired electrons was experimentally demonstrated for the first time about twenty years ago. The basic theory describing such an in teraction had already been developed and the first nuclear reactors with large available thermal neutron fluxes had recently been con structed. The power of the magnetic neutron interaction for in vestigating the structure of magnetic materials was immediately recognized and put to use where possible. Neutron diffraction, however, was practicable only in countries with nuclear reactors. The earliest neutron determinations of magnetic ordering were hence primarily carried out at Oak Ridge and Brookhaven in the US, at Chalk River in Canada and at Harwell in England. Diffraction patterns from polycrystalline ferromagnets and antiferromagnets are interpretable if produced by simple spin arrays. More complex magnetic scattering patterns could often be unravelled, in terms of a three-dimensional array of atomic moments, if the specimen studied is a single crystal. The devel opment of sophisticated cryogenic equipment, with independently alignable magnetic fields, opened the way to greater complexity in the magnetic structures that could be successfully determined, as did also the introduction of polarized neutron beams. By the end of the 'sixties, many countries were contributing significantly to neutron diffraction studies of a wide variety of magnetic materials.
The inter action between the magnetic field generated by the neutron and the magnetic moment of atoms containing unpaired electrons was experimentally demonstrated for the first time about twenty years ago. The basic theory describing such an in teraction had already been developed and the first nuclear reactors with large available thermal neutron fluxes had recently been con structed. The power of the magnetic neutron interaction for in vestigating the structure of magnetic materials was immediately recognized and put to use where possible. Neutron diffraction, however, was practicable only in countries with nuclear reactors. The earliest neutron determinations of magnetic ordering were hence primarily carried out at Oak Ridge and Brookhaven in the US, at Chalk River in Canada and at Harwell in England. Diffraction patterns from polycrystalline ferromagnets and antiferromagnets are interpretable if produced by simple spin arrays. More complex magnetic scattering patterns could often be unravelled, in terms of a three-dimensional array of atomic moments, if the specimen studied is a single crystal. The devel opment of sophisticated cryogenic equipment, with independently alignable magnetic fields, opened the way to greater complexity in the magnetic structures that could be successfully determined, as did also the introduction of polarized neutron beams. By the end of the 'sixties, many countries were contributing significantly to neutron diffraction studies of a wide variety of magnetic materials.
Neutron Scattering - Magnetic and Quantum Phenomena provides detailed coverage of the application of neutron scattering in condensed matter research. The book's primary aim is to enable researchers in a particular area to identify the aspects of their work where neutron scattering techniques might contribute, conceive the important experiments to be done, assess what is required to carry them out, write a successful proposal for one of the major user facilities, and perform the experiments under the guidance of the appropriate instrument scientist. An earlier series edited by Kurt Sköld and David L. Price, and published in the 1980s by Academic Press as three volumes in the series Methods of Experimental Physics, was very successful and remained the standard reference in the field for several years. This present work has similar goals, taking into account the advances in experimental techniques over the past quarter-century, for example, neutron reflectivity and spin-echo spectroscopy, and techniques for probing the dynamics of complex materials of technological relevance. This volume complements Price and Fernandez-Alonso (Eds.), Neutron Scattering - Fundamentals published in November 2013. - Covers the application of neutron scattering techniques in the study of quantum and magnetic phenomena, including superconductivity, multiferroics, and nanomagnetism - Presents up-to-date reviews of recent results, aimed at enabling the reader to identify new opportunities and plan neutron scattering experiments in their own field - Provides a good balance between theory and experimental techniques - Provides a complement to Price and Fernandez-Alonso (Eds.), Neutron Scattering - Fundamentals published in November 2013
I. Theoretical principles of neutron and synchrotron X-ray scattering. Neutron- and synchrotron X-ray scattering (the theoretical principles) / W. E. Fischer -- II. Structure determination. Structure determination by powder synchrotron X-ray diffraction / A. N. Fitch -- Structure determination by powder neutron diffraction / E. Gray and E. Kisi -- Seminar on "structure" / K. Yvon -- III. Magnetism. Magnetic neutron and synchrotron X-ray scattering / W. G Stirling -- Magnetic excitations through the eye of the neutron / W. J. L. Buyers -- Topological excitations in low dimensional magnets / H. B. Braun -- Seminar on "magnetism" / G. H. Lander -- IV. Correlated electron systems. Elastic and inelastic X-ray scattering from correlated electrons: A theoretical perspective / M. Altarelli -- SANS measurements on vortices in superconductors. What can we learn? / V. B. Geshkenbein -- Seminar on "electronic structures" / J. Mesot -- V. Multilayers. From thin films to superlattices studied with X-rays and neutrons / D. E. McMorrow -- Seminar on "multilayers" / S. K. Sinha -- VI. Other topics in condensed matter research. From entropy driven motion to reptation - Large scale dynamics in polymer melts / D. Richter -- Small-angle and surface scattering from porous and fractal materials / S. K. Sinha -- Hot topics in condensed matter physics / H. R. Ott -- Seminar on "dynamics" / B. Dorner -- VII. Beam optics. Neutron beam optics / P. Boni -- Synchrotron X-ray beam optics / A. Freund -- VIII. Summary. Summary lecture: Some features of the scattering and absorption of beams of neutrons and beams of X-rays / S. W. Lovesey
This second volume in the HERCULES Course on Neutron and Synchrotron Radiation for Condensed Matter Studies is devoted to selected applications in physics and chemistry of solids, with the fourteen chapters ranging from general considerations of symmetry in condensed matter to the most recent developments in magnetic excitations and electron spectroscopies in high Tc superconductors. The subjects were chosen either for their basic importance or because of interesting new developments, while the fifteen authors were selected both for their high scientific expertise and their teaching skills.