Download Free Neutron Dosimetry Book in PDF and EPUB Free Download. You can read online Neutron Dosimetry and write the review.

Radiation dosimetry has made great progress in the last decade, mainly because radiation therapy is much more widely used. Since the first edition, many new developments have been made in the basic methods for dosimetry, i.e. ionization chambers, TLD, chemical dosimeters, and photographic films. Radiation Dosimetry: Instrumentation and Methods, Second Edition brings to the reader these latest developments. Written at a high level for medical physicists, engineers, and advanced dosimetrists, it concentrates only on evolvement during the last decade, relying on the first edition to provide the basics.
The Committee on Dosimetry for the Radiation Effects Research Foundation (RERF) was set up more than a decade ago at the request of the U.S. Department of Energy. It was charged with monitoring work and experimental results related to the Dosimetry System 1986 (DS86) used by RERF to reconstruct the radiation doses to the survivors in Hiroshima and Nagasaki. At the time it was established, DS86 was believed to be the best available dosimetric system for RERF, but questions have persisted about some features, especially the estimates of neutrons resulting from the Hiroshima bomb. This book describes the current situation, the gamma-ray dosimetry, and such dosimetry issues as thermal-neutron discrepancies between measurement and calculation at various distances in Hiroshima and Nagasaki. It recommends approaches to bring those issues to closure and sets the stage for the recently convened U.S. and Japan Working Groups that will develop a new dosimetry for RERF. The book outlines the changes relating to DS86 in the past 15 years, such as improved numbers that go into, and are part of, more sophisticated calculations for determining the radiations from bombs that reach certain distances in air, and encourages incorporation of the changes into a revised dosimetry system.
A straightforward presentation of the broad concepts underlying radiological physics and radiation dosimetry for the graduate-level student. Covers photon and neutron attenuation, radiation and charged particle equilibrium, interactions of photons and charged particles with matter, radiotherapy dosimetry, as well as photographic, calorimetric, chemical, and thermoluminescence dosimetry. Includes many new derivations, such as Kramers X-ray spectrum, as well as topics that have not been thoroughly analyzed in other texts, such as broad-beam attenuation and geometrics, and the reciprocity theorem. Subjects are layed out in a logical sequence, making the topics easier for students to follow. Supplemented with numerous diagrams and tables.
Fosters a thorough understand of radiation dosimetry concepts: detailed solutions to the exercises in the textbook Fundamentals of Ionizing Radiation Dosimetry!
"The neutron is an unstable nucleon outside the atomic nucleus; its mass is approximately 0.0014 times higher than the proton's mass and it plays an essential role in the atomic nucleus's stability. The neutron does not have an electric charge and interacts with matter causing numerous reactions. The above properties make the neutron essential in several areas. In nuclear power production, for instance, the neutron combined with the moderator plays a critical role. This book is a collection of works related to the neutron and its applications. Each chapter of this book's content is self-contained and is derived from the experience and research carried out by the authors. The book describes each aspect of neutrons ranging from their essential characteristics to their applications. Chapters of this book concern topics including the description of neutron characteristics, the challenge of neutron dosimetry, the ambient dose equivalent due to cosmic neutrons, the use of neutrons as an analytical tool through neutron activation analysis, the absorbed dose response of natural minerals which also have thermoluminescent features, and the use of neutrons in medicine to treat cancer and rheumatoid arthritis. The book also discusses topics such as neutron attenuation by super-alloys, neutron production in radiotherapy with electrons, the use of neutrons to detect explosives, and cloud computing technology for neutron dosimetry and spectrometry. This book would be handy for scientists, engineers, researchers, students, and practitioners in neutron studies and applications"--
Neutron capture therapy (NCT) is based on the ability of the non-radioactive isotope boron-10 to capture thermal neutrons with very high probability and immediately to release heavy particles with a path length of one cell diameter, which in principle allows for tumor cell-selective high-LET particle radiotherapy. This book provides a comprehensive summary of the progress made in NCT in recent years. Individual sections cover all important aspects, including neutron sources, boron chemistry, drugs for NCT, dosimetry, and radiation biology. The use of NCT in a variety of malignancies and also some non-malignant diseases is extensively discussed. NCT is clearly shown to be a promising modality at the threshold of wider clinical application. All of the chapters are written by experienced specialists in language that will be readily understood by all participating disciplines.