Download Free Neutrino Astronomy Current Status Future Prospects Book in PDF and EPUB Free Download. You can read online Neutrino Astronomy Current Status Future Prospects and write the review.

This review volume is motivated by the recent discovery of high-energy astrophysical neutrinos by IceCube. The aim of the book is to bring together chapters on the status of current and future neutrino observatories with chapters on the implications and possible interpretations of the present observations and their upper limits. Each chapter is a mini-review of one aspect of the subject by leading experts. Taken together, the chapters constitute an up-to-date review of high-energy astrophysical neutrinos and their potential sources.
This book addresses three “hot” topics concerning the general problem of the origin of Galactic cosmic rays, namely (1) the acceleration, propagation, and radiation of particles in supernova remnants; (2) very high energy neutrinos from the Galactic Center; and (3) the potential held by the next-generation gamma-ray and neutrino detectors CTA and KM3NeT for studying extended non-thermal sources in the Galaxy. The topics are intrinsically connected to determining the nature (“hadronic or leptonic?”) of gamma-ray emissions from young and middle-aged supernova remnants and the search for cosmic-ray PeVatrons. The results and conclusions provided here are based on extensive analytical and numerical simulations, which are formulated and presented in a straightforward format that can be readily used in the interpretations of gamma-ray and neutrino observations, as well as for confident predictions for future measurements.
This book introduces the reader to how fundamental topics in particle physics can be studied with the largest neutrino telescopes currently in operation. Due to their large size, reaching cubic-kilometer volumes, and their wide energy response, these unusual detectors can provide insight on neutrino oscillations, dark matter searches or searches for exotic particles, new neutrino interactions or extra dimensions, among many other topics.Lacking a man-made neutrino 'beam', neutrino telescopes use the copious flux of neutrinos continuously produced by cosmic rays interacting in the Earth's atmosphere, as well as neutrinos from astrophysical origin. They have therefore access to neutrinos of higher energies and much longer baselines than those produced in present accelerators, being able to search for new physics at complementary scales than currently available in particle physics laboratories around the world.Written by carefully chosen experts in the field, the book introduces each topic in a pedagogical way apt not only to professionals, but also to students or the interested reader with a background in physics.
The second set of The Encyclopedia of Cosmology, in three volumes, continues this major, long-lasting, seminal reference at the graduate student level laid out by the most prominent researchers in the general field of cosmology. Together, these volumes will be a comprehensive review of the most important current topics in cosmology, discussing the important concepts and current status in each field, covering both theory and observation.These three volumes are edited by Dr Giovanni Fazio from the Center for Astrophysics | Harvard & Smithsonian, with each volume authored or edited by specialists in the area: Modified Gravity by Claudia de Rham and Andrew Tolley (Imperial College), Neutrino Physics and Astrophysics edited by Floyd Stecker (NASA/Goddard Space Flight Center), Black Holes edited by Zoltan Haiman (Columbia University). These volumes follow the earlier publication in 2020 of The Encyclopedia of Cosmology, which comprises the following four volumes: Galaxy Formation and Evolution by Rennan Barkana (Tel Aviv University), Numerical Simulations in Cosmology edited by Kentaro Nagamine (Osaka University / University of Nevada), Dark Energy by Shinji Tsujikawa (Tokyo University of Science), and Dark Matter by Jihn E Kim (Seoul National University). The Encyclopedia aims to provide an overview of the most important topics in cosmology and serve as an up-to-date reference in astrophysics.
The primary purpose of this book is to prepare the ground for coordinated efforts aiming to answer the question: where and when life originated. The appearance of life involves three successive stages: i) the formation of chemical elements and their combination to simple molecules, which is the concern of physicists; ii) the evolution of organized complexity in biomolecules and their reactions, which falls within the field of chemistry; iii) the onset of Darwinian evolution after the appearance of the first cell-like structure, which is studied by biologists. This book focuses on the first two steps of this process with chapters exploring topics such as chemical element abundances; galaxies, galactic magnetic fields and cosmic rays; galactic chemical evolution. Key Features: Contains extensive lists of reference and additional reading. Includes new hypotheses concerning the origin of life. Combines consideration from nuclear physics, astrophysics, astro- and geochemistry. Despite its interdisciplinary nature, this book remains accessible to nonexperts, and would be a valuable companion for both experts and laypeople.
'This book is recommended to those interested in knowing how TeV astronomy began, evolved, and remains a growth area.The author has captured the difficulties of being a pioneer, amply demonstrating the need to keep the faith and work the problem until you succeed. Cherenkov telescopes are now in operation around the world, and at the dawn of the CTA era TeV astronomy has a lot of evolving still to do.'The ObservatoryThis book documents how TeV gamma-ray astronomy painstakingly emerged from 20th century traditional cosmic-ray physics to become a keystone feature of contemporary high-energy astrophysics, fundamental to our understanding of high-energy cosmic processes and interactions. Contemporary TeV observations are based on the Imaging Atmospheric Cherenkov Technique and in excess of two hundred individual galactic and extra-galactic gamma-ray sources have now been discovered and studied in detail.The book tells the story from the perspective of the Whipple Observatory collaboration, pioneers of the imaging technique. At the same time, parallel developments by the broader community are constantly referenced, discussed and evaluated, mainly in the TeV energy regime but also where relevant at PeV energies. The narrative traces the contributions of many important participants active in the field since the mid-1950s and critically evaluates and provides commentary on the progress of research until the first sources were established beyond doubt, during the late 1980s and early 1990s. The final chapter presents a short summary of the contemporary status of TeV gamma-ray astronomy.Written predominantly from a historical perspective, the author guides readers through many decades of instrumental development and evolution, using only minimal mathematical background. This book will appeal to astrophysicists, particle physicists, traditional optical and radio astronomers, as well as others working across a variety of related cognate disciplines. It should be of interest and value to graduate students involved with contemporary fourth-generation TeV research programs such as CTA (Cherenkov Telescope Array).
This book summarizes the science to be carried out by the upcoming Cherenkov Telescope Array, a major ground-based gamma-ray observatory that will be constructed over the next six to eight years. The major scientific themes, as well as core program of key science projects, have been developed by the CTA Consortium, a collaboration of scientists from many institutions worldwide.CTA will be the major facility in high-energy and very high-energy photon astronomy over the next decade and beyond. CTA will have capabilities well beyond past and present observatories. Thus, CTA's science program is expected to be rich and broad and will complement other major multiwavelength and multimessenger facilities. This book is intended to be the primary resource for the science case for CTA and it thus will be of great interest to the broader physics and astronomy communities. The electronic version (e-book) is available in open access.
The neutrino is the most fascinating elementary particle due to its elusive nature and outstanding properties that have attracted the interest of generations of physicists since 1930, when it was first postulated by Wolfgang Pauli as a 'desperate remedy' to explain the apparent energy violation in the beta decay. Many fundamental discoveries in particle physics had the neutrino involved in one way or another. To date, neutrino physics is still one of the hottest topics of modern particle physics. Key experiments and significant theoretical developments have contributed in building up what we can call now the Standard Model of Neutrino Physics.The aim of the book is to provide graduate students and young researchers a comprehensive tutorial in modern neutrino physics, specially tailored with emphasis on the educational aspects. It provides an overview of the basics and of recent achievements in the field, from both experimental and theoretical points of view.
Reviews the current state of knowledge of neutrino masses and the related question of neutrino oscillations. After an overview of the theory of neutrino masses and mixings, detailed accounts are given of the laboratory limits on neutrino masses, astrophysical and cosmological constraints on those masses, experimental results on neutrino oscillations, the theoretical interpretation of those results, and theoretical models of neutrino masses and mixings. The book concludes with an examination of the potential of long-baseline experiments. This is an essential reference text for workers in elementary-particle physics, nuclear physics, and astrophysics.