Download Free Neutrino And Electromagnetic Counterparts Of Galaxy And Astrophysical Black Hole Mergers Book in PDF and EPUB Free Download. You can read online Neutrino And Electromagnetic Counterparts Of Galaxy And Astrophysical Black Hole Mergers and write the review.

The historical coincident detection of gravitational waves (GWs) and electromagnetic (EM) counterparts from the binary neutron star merger event GW 170817 heralds a new era in multi-messenger astronomy. At the same time, since the first discovery of the high-energy astrophysical neutrinos in 2012 by IceCube, neutrino astrophysics has made significant progress and has started playing an increasingly important role in multi-messenger analyses. We are currently in the stage where we can probe the nature of the extreme astrophysical phenomena with the synergies between EM photons, neutrinos, GWs, and cosmic rays. In this dissertation, I start with an overview of the development of multi-messenger astrophysics and its application to astrophysical mergers. I will present our work on the cumulative diffuse neutrino background from galaxy/cluster mergers and show that our scenario can explain the diffuse neutrino flux without violating the extragalactic gamma-ray background constraints (chapter 2). We further demonstrate that the synchrotron and inverse Compton emissions produced by secondary electrons/positrons are consistent with the radio and X-ray observations of merging galaxies such as NGC 660 and NGC 3256 (chapter 3). In chapters 4 & 5, we focus on the jet-induced neutrino and EM counterparts from supermassive black hole (SMBH) mergers subsequent to GW radiation and discuss the detection perspectives for the ongoing and next-generation neutrino, optical, and GW missions. The short gamma-ray bursts, which are generally thought to arise from compact binary object (CBO) mergers, could be promising candidates for multi-messenger studies. We then consider a special scenario where short GRBs are embedded in disks of active galactic nuclei (AGN) and investigate their GeV signatures in chapter 6. In a separate effort, we study the stacking and multiplet constraints on the blazar contribution to the cumulative diffuse neutrino flux, assuming a generic relationship between neutrino and gamma-ray luminosities (chapter 7). We show that these two limits are complementary, and our results support the argument that blazars are disfavored as the dominant sources of the 100-TeV neutrino background. This work provides rather general and stringent constraints for future studies of blazar neutrinos.
In August 2017, a merger of two neutron stars (NSs) was detected for the first time via several carriers. Observed in gravitational waves, as well as in the electromagnetic spectrum, the GW170817 marked the dawn of multi-messenger astronomy for compact object mergers, and shed light on numerous astrophysical aspects of binary neutron star (BNS) mergers and on the properties of matter at supranuclear densities. And yet many questions remain, starting with the outcome of the merger. Was it a massive NS temporarily supported against collapse, or a black hole? How important are BNS mergers in cosmic chemical evolution, i.e., the evolution of spatial and temporal distributions of heavy elements in galaxies? It is known that they enrich their surroundings with very heavy elements, but are they the dominant source of these elements? Modeling these events on the computer, do we understand them correctly, i.e., do our predictions regarding the properties of the ejected matter and its EM signatures agree with the newly gained data? This thesis is dedicated to addressing these questions by means of analyzing a large set of numerical simulations of BNS mergers, performed with state-of-the-art numerical tools, and targeted specifically to GW170817. Employing a suite of postprocessing tools we study the matter dynamics. Special attention is given to matter, ejected from the system during and after merger, so-called ejecta. With the help of a parameterized nucleosynthesis model, we study the final abundances of heavy elements in ejecta, comparing them to solar abundances. Furthermore, we investigate EM emission, powered by the decay of newly synthesized heavy elements, comparing it to the observations of GW170817. Finally, we study the long-term emission of the ejected material as it propagates through the interstellar medium (ISM), via our new numerical tools, comparing the results with a recently detected change in the emission from GW170817.
In August 2017, a merger of two neutron stars (NSs) was detected for the first time via several carriers. Observed in gravitational waves, as well as in the electromagnetic spectrum, the GW170817 marked the dawn of multi-messenger astronomy for compact object mergers, and shed light on numerous astrophysical aspects of binary neutron star (BNS) mergers and on the properties of matter at supranuclear densities. And yet many questions remain, starting with the outcome of the merger. Was it a massive NS temporarily supported against collapse, or a black hole? How important are BNS mergers in cosmic chemical evolution, i.e., the evolution of spatial and temporal distributions of heavy elements in galaxies? It is known that they enrich their surroundings with very heavy elements, but are they the dominant source of these elements? Modeling these events on the computer, do we understand them correctly, i.e., do our predictions regarding the properties of the ejected matter and its EM signatures agree with the newly gained data? This thesis is dedicated to addressing these questions by means of analyzing a large set of numerical simulations of BNS mergers, performed with state-of-the-art numerical tools, and targeted specifically to GW170817. Employing a suite of postprocessing tools we study the matter dynamics. Special attention is given to matter, ejected from the system during and after merger, so-called ejecta. With the help of a parameterized nucleosynthesis model, we study the final abundances of heavy elements in ejecta, comparing them to solar abundances. Furthermore, we investigate EM emission, powered by the decay of newly synthesized heavy elements, comparing it to the observations of GW170817. Finally, we study the long-term emission of the ejected material as it propagates through the interstellar medium (ISM), via our new numerical tools, comparing the results with a recently detected change in the emission from GW170817.
Driven by discoveries, and enabled by leaps in technology and imagination, our understanding of the universe has changed dramatically during the course of the last few decades. The fields of astronomy and astrophysics are making new connections to physics, chemistry, biology, and computer science. Based on a broad and comprehensive survey of scientific opportunities, infrastructure, and organization in a national and international context, New Worlds, New Horizons in Astronomy and Astrophysics outlines a plan for ground- and space- based astronomy and astrophysics for the decade of the 2010's. Realizing these scientific opportunities is contingent upon maintaining and strengthening the foundations of the research enterprise including technological development, theory, computation and data handling, laboratory experiments, and human resources. New Worlds, New Horizons in Astronomy and Astrophysics proposes enhancing innovative but moderate-cost programs in space and on the ground that will enable the community to respond rapidly and flexibly to new scientific discoveries. The book recommends beginning construction on survey telescopes in space and on the ground to investigate the nature of dark energy, as well as the next generation of large ground-based giant optical telescopes and a new class of space-based gravitational observatory to observe the merging of distant black holes and precisely test theories of gravity. New Worlds, New Horizons in Astronomy and Astrophysics recommends a balanced and executable program that will support research surrounding the most profound questions about the cosmos. The discoveries ahead will facilitate the search for habitable planets, shed light on dark energy and dark matter, and aid our understanding of the history of the universe and how the earliest stars and galaxies formed. The book is a useful resource for agencies supporting the field of astronomy and astrophysics, the Congressional committees with jurisdiction over those agencies, the scientific community, and the public.
This book grew out of the author’s notes from his course on Radiative Processes in High Energy Astrophysics. The course provides fundamental definitions of radiative processes and serves as a brief introduction to Bremsstrahlung and black body emission, relativistic beaming, synchrotron emission and absorption, Compton scattering, synchrotron self-compton emission, pair creation and emission. The final chapter discusses the observed features of Active Galactic Nuclei and their interpretation based on the radiative processes presented in the book. Written in an informal style, this book will guide students through their first encounter with high-energy astrophysics.
As the most powerful explosion that occurs in the universe, gamma-ray bursts (GRBs) are one of the most exciting topics being studied in astrophysics. Creating more energy than the Sun does in its entire lifetime, GRBs create a blaze of light that will outshine every other object visible in the sky, enabling us to measure galaxies that are several million years old.GRBs cover various areas of astronomy and interest in them reaches a wide range of fields. Andrew Levan explores the fascinating history of these astronomical occurrences and details our current understanding of GRBs. The science behind them is rapidly moving and this book examines the knowledge that we now have as well as the questions that are continually being raised. Predominantly aimed at PhD students and researchers in the area, Gamma-Ray Bursts addresses this captivating topic and outlines the principles and initial applications of a fascinating astronomical phenomena.
Dark Matter, Neutrinos, and Our Solar System is a unique enterprise that should be viewed as an important contribution to our understanding of dark matter, neutrinos and the solar system. It describes these issues in terms of links, between cosmology, particle and nuclear physics, as well as between cosmology, atmospheric and terrestrial physics. It studies the constituents of dark matter (classified as hot warm and cold) first in terms of their individual structures (baryonic and non-baryonic, massive and non-massive, interacting and non-interacting) and second, in terms of facilities available to detect these structures (large and small). Neutrinos (an important component of dark matter) are treated as a separate entity. A detailed study of these elusive (sub-atomic) particles is done, from the year 1913 when they were found as byproducts of beta decay — until the discovery in 2007 which confirmed that neutrino flavors were not more than three (as speculated by some).The last chapter of the book details the real-time stories about the “regions” that were not explored thus far, for lack of advanced technology. Their untold fascinating stories (which span up to 2010) are illustrated here datewise in full.The book concludes with the latest news that the Large Hadron Collider team at CERN has finally succeeded in producing 7 trillion electronic Volts of energy by creating head-on-collisions of protons and more protons (in search of God-particle). The energy produced was three times more than previous records.
The International Conference, Orbis Scientiae 1996, focused on the topics: The Neutrino Mass, Light Cone Quantization, Monopole Condensation, Dark Matter, and Gravitational Waves which we have adopted as the title of these proceedings. Was there any exciting news at the conference? Maybe, it depends on who answers the question. There was an almost unanimous agreement on the overall success of the conference as was evidenced by the fact that in the after-dinner remarks by one of us (BNK) the suggestion of organizing the conference on a biannual basis was presented but not accepted: the participants wanted the continuation of the tradition to convene annually. We shall, of course, comply. The expected observation of gravitational waves will constitute the most exciting vindication of Einstein's general relativity. This subject is attracting the attention of the experimentalists and theorists alike. We hope that by the first decade of the third millennium or earlier, gravitational waves will be detected, opening the way for a search for gravitons somewhere in the universe, presumably through the observations in the CMBR. The theoretical basis of the graviton search will take us to quantum gravity and eventually to the modification of general relativity to include the Planck scale behavior of gravity -at energies 19 of the order of 10 Ge V.
The era of Gravitational Waves Astronomy was launched after the success of the first observation run of the LIGO Scientific Collaboration and the VIRGO Collaboration. The large laser interferometers incredible achievement prompted the need of extensive studies in the field of compact astrophysical objects, such as Black Holes and Neutron Stars. Today, seven years after this event, the field of study underwent a notable expansion, corroborated by the detection of a signal coming from a Binary Neutron Star merger, together with its electro-magnetic counterpart, and, more recently, by the first detections of signals coming from mixed compact binaries, i.e. Black Hole- Neutron Star binaries. In this thesis work we span our attention across different aspects of compact objects mergers, including the inclusion of new physics into the already performing numerical relativity code BAM and the study of specific systems of compact objects. We first explore the treatment of neutrinos in case of Binary Neutron Star mergers and a tool to identify and further analyze regions containing trapped neutrinos, in the hot remnant of such mergers. Neutrinos, play in fact a key role into the rapid processes that characterize the formation of elements in the dynamical ejecta expelled during these catastrophic events. In the following we explore a variety of configurations of mixed compact binary systems. After the development of the new ID code Elliptica, and the steps taken to verify its accuracy, we make use of its capability to evolve sets of physical system with various properties. Exploring the space of parameters we study different spin configurations and magnitudes of single objects and their effects on the merger dynamics.
This volume is a collection of dedicated reviews covering all aspects of theoretical high energy physics and some aspects of solid state physics. Some of the papers are broad reviews of topics that span the entire field while others are surveys of authors' personal achievements. This is the most comprehensive review collection reflecting state of the art at the end of 2004. An important and unique aspect is a special effort the authors have invested in making the presentation pedagogical