Download Free Neuronal Cell Death Book in PDF and EPUB Free Download. You can read online Neuronal Cell Death and write the review.

This volume represents a valuable and readily reproducible collection of established and emerging techniques for neuronal cell death research. Conveniently divided into four parts, sections cover a series of techniques for the molecular, structural, functional and genomic characterization of dying neurons, a number of protocols that are of primary interest in neuropathology and in experimental neuropathology, a series of gene engineering techniques to obtain and manipulate neuronal stem cells and progenitors, to prepare HSV-1 vectors for the gene therapy, and to CNS transplantation of bone marrow stem cells, and finally, some very interesting protocols for the study of cell death in non-mammalian models. Written in the successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, Neuronal Cell Death: Methods and Protocols seeks to serve a large audience of scientists that are currently active in the field or are willing to enter such an exciting and still expanding area of neurobiology.
The brain is the most complex organ in our body. Indeed, it is perhaps the most complex structure we have ever encountered in nature. Both structurally and functionally, there are many peculiarities that differentiate the brain from all other organs. The brain is our connection to the world around us and by governing nervous system and higher function, any disturbance induces severe neurological and psychiatric disorders that can have a devastating effect on quality of life. Our understanding of the physiology and biochemistry of the brain has improved dramatically in the last two decades. In particular, the critical role of cations, including magnesium, has become evident, even if incompletely understood at a mechanistic level. The exact role and regulation of magnesium, in particular, remains elusive, largely because intracellular levels are so difficult to routinely quantify. Nonetheless, the importance of magnesium to normal central nervous system activity is self-evident given the complicated homeostatic mechanisms that maintain the concentration of this cation within strict limits essential for normal physiology and metabolism. There is also considerable accumulating evidence to suggest alterations to some brain functions in both normal and pathological conditions may be linked to alterations in local magnesium concentration. This book, containing chapters written by some of the foremost experts in the field of magnesium research, brings together the latest in experimental and clinical magnesium research as it relates to the central nervous system. It offers a complete and updated view of magnesiums involvement in central nervous system function and in so doing, brings together two main pillars of contemporary neuroscience research, namely providing an explanation for the molecular mechanisms involved in brain function, and emphasizing the connections between the molecular changes and behavior. It is the untiring efforts of those magnesium researchers who have dedicated their lives to unraveling the mysteries of magnesiums role in biological systems that has inspired the collation of this volume of work.
Intended for use by advanced undergraduate, graduate and medical students, this book presents a study of the unique biochemical and physiological properties of neurons, emphasising the molecular mechanisms that generate and regulate their activity.
Traumatic brain injury (TBI) remains a significant source of death and permanent disability, contributing to nearly one-third of all injury related deaths in the United States and exacting a profound personal and economic toll. Despite the increased resources that have recently been brought to bear to improve our understanding of TBI, the developme
Possible new breakthroughs in understanding the aging mind that can be used to benefit older people are now emerging from research. This volume identifies the key scientific advances and the opportunities they bring. For example, science has learned that among older adults who do not suffer from Alzheimer's disease or other dementias, cognitive decline may depend less on loss of brain cells than on changes in the health of neurons and neural networks. Research on the processes that maintain neural health shows promise of revealing new ways to promote cognitive functioning in older people. Research is also showing how cognitive functioning depends on the conjunction of biology and culture. The ways older people adapt to changes in their nervous systems, and perhaps the changes themselves, are shaped by past life experiences, present living situations, changing motives, cultural expectations, and emerging technology, as well as by their physical health status and sensory-motor capabilities. Improved understanding of how physical and contextual factors interact can help explain why some cognitive functions are impaired in aging while others are spared and why cognitive capability is impaired in some older adults and spared in others. On the basis of these exciting findings, the report makes specific recommends that the U.S. government support three major new initiatives as the next steps for research.
The field of neurology is being transformed, from a therapeutically nihilistic discipline with few effective treatments, to a therapeutic specialty which offers new, effective treatments for disorders of the brain and spinal cord. This remarkable transformation has bridged neuroscience, molecular medicine, and clinical investigation, and represents a major triumph for biomedical research. This book, which contains chapters by more than 29 internationally recognized authorities who have made major contributions to neurotherapeutics, tells the stories of how new treatments for disabling disorders of the nervous system, such as stroke, multiple sclerosis, Parkinson's disease, and migraine, were developed, and explores evolving themes and technologies that offer hope for even more effective treatments and ultimately cures for currently untreatable disorders of the brain and spinal cord. The first part of this book reviews the development of new therapies in neurology, from their inception in terms of basic science to their introduction into the clinical world. It also explores evolving themes and new technologies. This book will be of interest to everyone – clinicians and basic scientists alike – interested in diseases of the brain and spinal cord, and in the quest for new treatments for these disorders.* Presents the evolution of the field of neurology into a therapeutic discipline * Discusses lessons learned from past successes and applications to ongoing work* Explores the future of this field
Neurobiology of Disease is aimed at any basic scientist or clinician scientist teaching a course or conducting research on the basic science underlying the major neurological diseases. It provides an excellent overview of cutting-edge research on the fundamental disorders of the nervous system, including physiological and molecular aspects of dysfunction. The major categories of neurological disease are covered, and the chapters provide specific information about particular diseases exemplifying each of these categories. Sufficient clinical information is included to put into perspective the basic mechanisms discussed. The book assembles a world-class team of section editors and chapters written by acknowledged experts in their respective fields. - Provides cutting edge information about fundamental mechanisms underlying neurological diseases - Amply supplied with tables, illustrations and references - Includes supporting clinical information putting the mechanisms of disease into perspective
Core Topics in Neuroanesthesia and Neurointensive Care is an authoritative and practical clinical text that offers clear diagnostic and management guidance for a wide range of neuroanesthesia and neurocritical care problems. With coverage of every aspect of the discipline by outstanding world experts, this should be the first book to which practitioners turn for easily accessible and definitive advice. Initial sections cover relevant anatomy, physiology and pharmacology, intraoperative and critical care monitoring and neuroimaging. These are followed by detailed sections covering all aspects of neuroanesthesia and neurointensive care in both adult and pediatric patients. The final chapter discusses ethical and legal issues. Each chapter delivers a state-of-the art review of clinical practice, including outcome data when available. Enhanced throughout with numerous clinical photographs and line drawings, this practical and accessible text is key reading for trainee and consultant anesthetists and critical care specialists.
These volumes teach readers to think beyond apoptosis and describes all of the known processes that cells can undergo which result in cell death This two-volume source on how cells dies is the first, comprehensive collection to cover all of the known processes that cells undergo when they die. It is also the only one of its kind to compare these processes. It seeks to enlighten those in the field about these many processes and to stimulate their thinking at looking at these pathways when their research system does not show signs of activation of the classic apoptotic pathway. In addition, it links activities like the molecular biology of one process (eg. Necrosis) to another process (eg. apoptosis) and contrasts those that are close to each. Volume 1 of Apoptosis and Beyond: The Many Ways Cells Die begins with a general view of the cytoplasmic and nuclear features of apoptosis. It then goes on to offer chapters on targeting the cell death mechanism; microbial programmed cell death; autophagy; cell injury, adaptation, and necrosis; necroptosis; ferroptosis; anoikis; pyronecrosis; and more. Volume 2 covers such subjects as phenoptosis; pyroptosis; hematopoiesis and eryptosis; cyclophilin d-dependent necrosis; and the role of phospholipase in cell death. Covers all known processes that dying cells undergo Provides extensive coverage of a topic not fully covered before Offers chapters written by top researchers in the field Provides activities that link and contrast processes to each other Apoptosis and Beyond: The Many Ways Cells Die will appeal to students and researchers/clinicians in cell biology, molecular biology, oncology, and tumor biology.
A million cells in our bodies die every second--they commit suicide by activating a process called apoptosis or other forms of programmed cell death. These mechanisms are essential for survival of the body as a whole and play critical roles in various developmental processes, the immune system, and cancer. In this second edition of Douglas Green's essential book on cell death, Green retains the bottom-up approach of the first edition, starting with the enzymes that carry out the execution (caspases) and their cellular targets before examining the machinery that connects them to signals that cause cell death. He also describes the roles of cell death in development, neuronal selection, and the development of self-tolerance in the immune system, as well as how the body uses cell death to defend against cancer. The new edition is fully updated to cover the many recent advances in our understanding of the death machinery and signals that control cell death. These include the mechanisms regulating necroptosis, mitophagy, and newly identified processes, such as ferroptosis. The book will thus be of great interest to researchers actively working in the field, as well as biologists and undergraduates encountering the topic for the first time.