Download Free Networks Of Invasion A Synthesis Of Concepts Book in PDF and EPUB Free Download. You can read online Networks Of Invasion A Synthesis Of Concepts and write the review.

Networks of Invasion bridges a conceptual gap between ecological network studies and invasion biology studies. This book contains chapters detailing pressing concerns regarding invasive species in food webs, but also extends the idea of networks of invasion to other systems, such as mutualistic networks or even the human microbiome. Chapters describe the tools, models, and empirical methods adapted for tackling invasions in ecological networks. - Contains chapters detailing pressing concerns regarding invasive species in food webs - Deals with topical and important reviews on the physiology, populations, and communities of plants and animals
There are many hypotheses describing the interactions involved in biological invasions, but it is largely unknown whether they are backed up by empirical evidence. This book fills that gap by developing a tool for assessing research hypotheses and applying it to twelve invasion hypotheses, using the hierarchy-of-hypotheses (HoH) approach, and mapping the connections between theory and evidence. In Part 1, an overview chapter of invasion biology is followed by an introduction to the HoH approach and short chapters by science theorists and philosophers who comment on the approach. Part 2 outlines the invasion hypotheses and their interrelationships. These include biotic resistance and island susceptibility hypotheses, disturbance hypothesis, invasional meltdown hypothesis, enemy release hypothesis, evolution of increased competitive ability and shifting defence hypotheses, tens rule, phenotypic plasticity hypothesis, Darwin's naturalization and limiting similarity hypotheses and the propagule pressure hypothesis. Part 3 provides a synthesis and suggests future directions for invasion research.
This new volume on Biological Invasions deals with both plants and animals, differing from previous books by extending from the level of individual species to an ecosystem and global level. Topics of highest societal relevance, such as the impact of genetically modified organisms, are interlinked with more conventional ecological aspects, including biodiversity. The combination of these approaches is new and makes compelling reading for researchers and environmentalists.
Humans have moved organisms around the world for centuries but it is only relatively recently that invasion ecology has grown into a mainstream research field. This book examines both the spread and impact dynamics of invasive species, placing the science of invasion biology on a new, more rigorous, theoretical footing, and proposing a concept of adaptive networks as the foundation for future research. Biological invasions are considered not as simple actions of invaders and reactions of invaded ecosystems, but as co-evolving complex adaptive systems with emergent features of network complexity and invasibility. Invasion Dynamics focuses on the ecology of invasive species and their impacts in recipient social-ecological systems. It discusses not only key advances and challenges within the traditional domain of invasion ecology, but introduces approaches, concepts, and insights from many other disciplines such as complexity science, systems science, and ecology more broadly. It will be of great value to invasion biologists analyzing spread and/or impact dynamics as well as other ecologists interested in spread processes or habitat management.
This new edition of Invasion Ecology provides a comprehensive and updated introduction to all aspects of biological invasion by non-native species. Highlighting important research findings associated with each stage of invasion, the book provides an overview of the invasion process from transportation patterns and causes of establishment success to ecological impacts, invader management, and post-invasion evolution. The authors have produced new chapters on predicting and preventing invasion, managing and eradicating invasive species, and invasion dynamics in a changing climate. Modern global trade and travel have led to unprecedented movement of non-native species by humans with unforeseen, interesting, and occasionally devastating consequences. Increasing recognition of the problems associated with invasion has led to a rapid growth in research into the dynamics of non-native species and their adverse effects on native biota and human economies. This book provides a synthesis of this fast growing field of research and is an essential text for undergraduate and graduate students in ecology and conservation management. Additional resources are available at www.wiley.com/go/invasionecology
Invasion ecology is the study of the causes and consequences of the introduction of organisms to areas outside their native range. Interest in this field has exploded in the past few decades. Explaining why and how organisms are moved around the world, how and why some become established and invade, and how best to manage invasive species in the face of global change are all crucial issues that interest biogeographers, ecologists and environmental managers in all parts of the world. This book brings together the insights of more than 50 authors to examine the origins, foundations, current dimensions and potential trajectories of invasion ecology. It revisits key tenets of the foundations of invasion ecology, including contributions of pioneering naturalists of the 19th century, including Charles Darwin and British ecologist Charles Elton, whose 1958 monograph on invasive species is widely acknowledged as having focussed scientific attention on biological invasions.
Examines how ecosystems can collapse as a result of human activity, and the ecological processes underlying their subsequent recovery.
This book presents the most comprehensive model yet for describing the structure and functioning of running freshwater ecosystems. Riverine Ecosystems Synthesis (RES) is a result of combining several theories published in recent decades, dealing with aquatic and terrestrial systems. New analyses are fused with a variety of new perspectives on how river network ecosystems are structured and function, and how they change along longitudinal, lateral, and temporal dimensions. Among these novel perspectives is a dramatically new view of the role of hydrogeomorphic forces in forming functional process zones from headwaters to the mouths of great rivers. Designed as a useful tool for aquatic scientists worldwide whether they work on small streams or great rivers and in forested or semi-arid regions, this book will provide a means for scientists to understand the fundamental and applied aspects of rivers in general and includes a practical guide and protocols for analyzing individual rivers. Specific examples of rivers in at least four continents (Africa, Australia, Europe and North America) serve to illustrate the power and utility of the RES concept. - Develops the classic, seminal article in River Research and Applications, "A Model of Biocomplexity in River Networks Across Space and Time" which introduced the RES concept for the first time - A guide to the practical analysis of individual rivers, extending its use from pristine ecosystems to modern, human-modified rivers - An essential aid both to the study fundamental and applied aspects of rivers, such as rehabilitation, management, monitoring, assessment, and flow manipulation of networks
In this edited volume, global experts in ecology and evolutionary biology explore how theories in ecology elucidate the processes of invasion, while also examining how specific invasions inform ecological theory. This reciprocal benefit is highlighted in a number of scales of organization: population, community and biogeographic. The text describes example invaders in all major groups of organisms and from a number of regions around the globe.
An advanced textbook adopting a theoretical modeling approach to review and discuss the current range and distributions of alien species, their rates of spread, and their impact in human-dominated ecosystems.