Download Free Neighborhood Semantics For Modal Logic Book in PDF and EPUB Free Download. You can read online Neighborhood Semantics For Modal Logic and write the review.

This book offers a state-of-the-art introduction to the basic techniques and results of neighborhood semantics for modal logic. In addition to presenting the relevant technical background, it highlights both the pitfalls and potential uses of neighborhood models – an interesting class of mathematical structures that were originally introduced to provide a semantics for weak systems of modal logic (the so-called non-normal modal logics). In addition, the book discusses a broad range of topics, including standard modal logic results (i.e., completeness, decidability and definability); bisimulations for neighborhood models and other model-theoretic constructions; comparisons with other semantics for modal logic (e.g., relational models, topological models, plausibility models); neighborhood semantics for first-order modal logic, applications in game theory (coalitional logic and game logic); applications in epistemic logic (logics of evidence and belief); and non-normal modal logics with dynamic modalities. The book can be used as the primary text for seminars on philosophical logic focused on non-normal modal logics; as a supplemental text for courses on modal logic, logic in AI, or philosophical logic (either at the undergraduate or graduate level); or as the primary source for researchers interested in learning about the uses of neighborhood semantics in philosophical logic and game theory.
This book offers a state-of-the-art introduction to the basic techniques and results of neighborhood semantics for modal logic. In addition to presenting the relevant technical background, it highlights both the pitfalls and potential uses of neighborhood models – an interesting class of mathematical structures that were originally introduced to provide a semantics for weak systems of modal logic (the so-called non-normal modal logics). In addition, the book discusses a broad range of topics, including standard modal logic results (i.e., completeness, decidability and definability); bisimulations for neighborhood models and other model-theoretic constructions; comparisons with other semantics for modal logic (e.g., relational models, topological models, plausibility models); neighborhood semantics for first-order modal logic, applications in game theory (coalitional logic and game logic); applications in epistemic logic (logics of evidence and belief); and non-normal modal logics with dynamic modalities. The book can be used as the primary text for seminars on philosophical logic focused on non-normal modal logics; as a supplemental text for courses on modal logic, logic in AI, or philosophical logic (either at the undergraduate or graduate level); or as the primary source for researchers interested in learning about the uses of neighborhood semantics in philosophical logic and game theory.
This 2006 book provides an accessible, yet technically sound treatment of modal logic and its philosophical applications.
Develops new semantical characterisations of many logical systems with quantification that are incomplete under the traditional Kripkean possible worlds interpretation. This book is for mathematical or philosophical logicians, computer scientists and linguists, including academic researchers, teachers and advanced students.
An introductory textbook on modal logic the logic of necessity and possibility.
This long-awaited book replaces Hughes and Cresswell's two classic studies of modal logic: An Introduction to Modal Logic and A Companion to Modal Logic. A New Introduction to Modal Logic is an entirely new work, completely re-written by the authors. They have incorporated all the new developments that have taken place since 1968 in both modal propositional logic and modal predicate logic, without sacrificing tha clarity of exposition and approachability that were essential features of their earlier works. The book takes readers from the most basic systems of modal propositional logic right up to systems of modal predicate with identity. It covers both technical developments such as completeness and incompleteness, and finite and infinite models, and their philosophical applications, especially in the area of modal predicate logic.
In this work, the author provides an introduction to the field of modal logic, outlining its major ideas and emploring the numerous ways in which various academic fields have adopted it.
A comprehensive examination of the interfaces of logic, computer science, and game theory, drawing on twenty years of research on logic and games. This book draws on ideas from philosophical logic, computational logic, multi-agent systems, and game theory to offer a comprehensive account of logic and games viewed in two complementary ways. It examines the logic of games: the development of sophisticated modern dynamic logics that model information flow, communication, and interactive structures in games. It also examines logic as games: the idea that logical activities of reasoning and many related tasks can be viewed in the form of games. In doing so, the book takes up the “intelligent interaction” of agents engaging in competitive or cooperative activities and examines the patterns of strategic behavior that arise. It develops modern logical systems that can analyze information-driven changes in players' knowledge and beliefs, and introduces the “Theory of Play” that emerges from the combination of logic and game theory. This results in a new view of logic itself as an interactive rational activity based on reasoning, perception, and communication that has particular relevance for games. Logic in Games, based on a course taught by the author at Stanford University, the University of Amsterdam, and elsewhere, can be used in advanced seminars and as a resource for researchers.
The present monograph is a slightly revised version of my Habilitations schrift Proof-theoretic Aspects of Intensional and Non-Classical Logics, successfully defended at Leipzig University, November 1997. It collects work on proof systems for modal and constructive logics I have done over the last few years. The main concern is display logic, a certain refinement of Gentzen's sequent calculus developed by Nuel D. Belnap. This book is far from offering a comprehensive presentation of generalized sequent systems for modal logics broadly conceived. The proof-theory of non-classical logics is a rapidly developing field, and even the generalizations of the ordinary notion of sequent listed in Chapter 1 can hardly be presented in great detail within a single volume. In addition to further investigating the various approaches toward generalized Gentzen systems, it is important to compare them and to discuss their relative advantages and disadvantages. An initial attempt at bringing together work on different kinds of proof systems for modal logics has been made in [188]. Another step in the same direction is [196]. Since Chapter 1 contains introductory considerations and, moreover, every remaining chapter begins with some surveying or summarizing remarks, in this preface I shall only emphasize a relation to philosophy that is important to me, register the sources of papers that have entered this book in some form or another, and acknowledge advice and support.
This revised and considerably expanded 2nd edition brings together a wide range of topics, including modal, tense, conditional, intuitionist, many-valued, paraconsistent, relevant, and fuzzy logics. Part 1, on propositional logic, is the old Introduction, but contains much new material. Part 2 is entirely new, and covers quantification and identity for all the logics in Part 1. The material is unified by the underlying theme of world semantics. All of the topics are explained clearly using devices such as tableau proofs, and their relation to current philosophical issues and debates are discussed. Students with a basic understanding of classical logic will find this book an invaluable introduction to an area that has become of central importance in both logic and philosophy. It will also interest people working in mathematics and computer science who wish to know about the area.