Download Free Need For New Powerplants Book in PDF and EPUB Free Download. You can read online Need For New Powerplants and write the review.

This book makes intelligible the wide range of electricity generating technologies available today, as well as some closely allied technologies such as energy storage. The book opens by setting the many power generation technologies in the context of global energy consumption, the development of the electricity generation industry and the economics involved in this sector. A series of chapters are each devoted to assessing the environmental and economic impact of a single technology, including conventional technologies, nuclear and renewable (such as solar, wind and hydropower). The technologies are presented in an easily digestible form.Different power generation technologies have different greenhouse gas emissions and the link between greenhouse gases and global warming is a highly topical environmental and political issue. With developed nations worldwide looking to reduce their emissions of carbon dioxide, it is becoming increasingly important to explore the effectiveness of a mix of energy generation technologies.Power Generation Technologies gives a clear, unbiased review and comparison of the different types of power generation technologies available. In the light of the Kyoto protocol and OSPAR updates, Power Generation Technologies will provide an invaluable reference text for power generation planners, facility managers, consultants, policy makers and economists, as well as students and lecturers of related Engineering courses.· Provides a unique comparison of a wide range of power generation technologies - conventional, nuclear and renewable· Describes the workings and environmental impact of each technology· Evaluates the economic viability of each different power generation system
This is a print on demand edition of a hard to find publication. Analyzes the factors that determine the cost of electricity from new power plants. These factors -- including construction costs, fuel expense, environ. regulations, and financing costs -- can all be affected by government, energy, environmental, and economic policies. Contents: (1) Intro. and Org.; (2) Types of Generating Technologies: Electricity Demand and Power Plant Choice and Operation; Utility Scale Generating Technologies; (3) Factors that Drive Power Plant Costs; (4) Fuel Costs. Appendixes: Power Generation Technology Process Diagrams and Images; Estimates of Power Plant Overnight Costs; Estimates of Technology Costs and Efficiency with Carbon Capture; Financial and Operating Assumptions. Charts and tables.
The U.S. Department of Energy (DOE) was given a mandate in the 1992 Energy Policy Act (EPACT) to pursue strategies in coal technology that promote a more competitive economy, a cleaner environment, and increased energy security. Coal evaluates DOE's performance and recommends priorities in updating its coal program and responding to EPACT. This volume provides a picture of likely future coal use and associated technology requirements through the year 2040. Based on near-, mid-, and long-term scenarios, the committee presents a framework for DOE to use in identifying R&D strategies and in making detailed assessments of specific programs. Coal offers an overview of coal-related programs and recent budget trends and explores principal issues in future U.S. and foreign coal use. The volume evaluates DOE Fossil Energy R&D programs in such key areas as electric power generation and conversion of coal to clean fuels. Coal will be important to energy policymakers, executives in the power industry and related trade associations, environmental organizations, and researchers.
The demand for electricity and heat production is still largely covered by conventional thermal power plants based on fossil fuel combustion. Thermal power stations face a big challenge to meet the environmental requirements constantly keeping high process efficiency and avoiding lifetime shortening of critical components. In recent years, many activities have been observed to reduce pollutant emissions and optimize performance in thermal power plants. Increased share of renewable sources of energy in domestic markets enforces flexible operation and fast adjustment to actual demand. Gas power plants start to play a very important role in this process, allowing for rapid change of load and emission reduction. Operation under changing load together with keeping emissions at the accurate level requires constantly introducing new solutions and technologies as well as carrying out many research and development activities for optimization of the electricity and heat production process. The edited book is aimed to present new technologies, innovative solutions, measurement techniques, tools and computational methods dedicated to thermal power plants in the light of new trends and challenges.
Brings together disparate conversations about wildlife conservation and renewable energy, suggesting ways these two critical fields can work hand in hand. Renewable energy is often termed simply "green energy," but its effects on wildlife and other forms of biodiversity can be quite complex. While capturing renewable resources like wind, solar, and energy from biomass can require more land than fossil fuel production, potentially displacing wildlife habitat, renewable energy infrastructure can also create habitat and promote species health when thoughtfully implemented. The authors of Renewable Energy and Wildlife Conservation argue that in order to achieve a balanced plan for addressing these two crucially important sustainability issues, our actions at the nexus of these fields must be directed by current scientific information related to the ecological effects of renewable energy production. Synthesizing an extensive, rapidly growing base of research and insights from practitioners into a single, comprehensive resource, contributors to this volume • describe processes to generate renewable energy, focusing on the Big Four renewables—wind, bioenergy, solar energy, and hydroelectric power • review the documented effects of renewable energy production on wildlife and wildlife habitats • consider current and future policy directives, suggesting ways industrial-scale renewables production can be developed to minimize harm to wildlife populations • explain recent advances in renewable power technologies • identify urgent research needs at the intersection of renewables and wildlife conservation Relevant to policy makers and industry professionals—many of whom believe renewables are the best path forward as the world seeks to meet its expanding energy needs—and wildlife conservationists—many of whom are alarmed at the rate of renewables-related habitat conversion—this detailed book culminates with a chapter underscoring emerging opportunities in renewable energy ecology. Contributors: Edward B. Arnett, Brian B. Boroski, Regan Dohm, David Drake, Sarah R. Fritts, Rachel Greene, Steven M. Grodsky, Amanda M. Hale, Cris D. Hein, Rebecca R. Hernandez, Jessica A. Homyack, Henriette I. Jager, Nicole M. Korfanta, James A. Martin, Christopher E. Moorman, Clint Otto, Christine A. Ribic, Susan P. Rupp, Jake Verschuyl, Lindsay M. Wickman, T. Bently Wigley, Victoria H. Zero
Mark Twain observed, “I'm in favour of progress; it's change I don't like.” Coal dominates Indian energy because it’s available domestically and cheap (especially without a carbon tax). If the global focus is on the energy transition, how does India ensure a just transition? Managing winners and losers will be the single largest challenge for India’s energy policy. Coal is entrenched in a complex ecosystem. In some states, it’s amongst the largest contributors to state budgets. The Indian Railways, India’s largest civilian employer, is afloat because it overcharges coal to offset under-recovery from passengers. Coal India Limited, the public sector miner that produces 85% of domestic coal, is the world’s largest coal miner. But despite enormous reserves, India imports about a quarter of consumption. On the flip side, coal faces inevitable pressure from renewable energy, which is the cheapest option for new builds. However, there is significant coal-based power capacity already in place, some of which is underutilized, or even stranded. Low per-capita energy consumption means India must still grow its energy supply. Before India can phase out coal, it must first achieve a plateau of coal. How this happens cost-effectively and with least resistance isn’t just a technical or economic question, it depends on the political economy of coal and its alternatives. Some stakeholders want to kill coal. A wiser option may be to first clean it up, instead of wishing it away. Across 18 chapters, drawing from leading experts in the field, we examine all aspects of coal’s future in India. We find no easy answers, but attempt to combine the big picture with details, bringing them together to offer a range of policy options.
We’ve all lived through long hot summers with power shortages, brownouts, and blackouts. But at last, all the what-to-do and how-to-do it information you’ll need to handle a full range of operation and maintenance tasks at your fingertips. Written by a power industry expert, Power Generation Handbook: Selection, Applications, Operation, Maintenance helps you to gain a thorough understanding of all components, calculations, and subsystems of the various types of gas turbines, steam power plants, co-generation, and combined cycle plants. Divided into five sections, Power Generation Handbook: Selection, Applications, Operation, Maintenance provides a thorough understanding of co-generation and combined cycle plants. Each of the components such as compressors, gas and steam turbines, heat recovery steam generators, condensers, lubricating systems, transformers, and generators are covered in detail. The selection considerations, operation, maintenance and economics of co-generation plants and combined cycles as well as emission limits, monitoring and governing systems will also be covered thoroughly. This all-in-one resource gives you step-by-step guidance on how to maximize the efficiency, reliability and longevity of your power generation plant.
Coal accounts for approximately one quarter of world energy consumption and of the coal produced worldwide approximately 65% is shipped to electricity producers and 33% to industrial consumers, with most of the remainder going to consumers in the residential and commercial sectors. The total share of total world energy consumption by coal is expected to increase to almost 30% in 2035. This book describes the challenges and steps by which electricity is produced form coal and deals with the challenges for removing the environmental objections to the use of coal in future power plants. New technologies are described that could virtually eliminate the sulfur, nitrogen, and mercury pollutants that are released when coal is burned for electricity generation. In addition, technologies for the capture greenhouse gases emitted from coal-fired power plants are described and the means of preventing such emissions from contributing to global warming concerns. Written by one of the world’s leading energy experts, this volume is a must-have for any engineer, scientist, or student working in this field, providing a valuable reference and guide in a quickly changing field.
Electricity, supplied reliably and affordably, is foundational to the U.S. economy and is utterly indispensable to modern society. However, emissions resulting from many forms of electricity generation create environmental risks that could have significant negative economic, security, and human health consequences. Large-scale installation of cleaner power generation has been generally hampered because greener technologies are more expensive than the technologies that currently produce most of our power. Rather than trade affordability and reliability for low emissions, is there a way to balance all three? The Power of Change: Innovation for Development and Deployment of Increasingly Clean Energy Technologies considers how to speed up innovations that would dramatically improve the performance and lower the cost of currently available technologies while also developing new advanced cleaner energy technologies. According to this report, there is an opportunity for the United States to continue to lead in the pursuit of increasingly clean, more efficient electricity through innovation in advanced technologies. The Power of Change: Innovation for Development and Deployment of Increasingly Clean Energy Technologies makes the case that America's advantagesâ€"world-class universities and national laboratories, a vibrant private sector, and innovative states, cities, and regions that are free to experiment with a variety of public policy approachesâ€"position the United States to create and lead a new clean energy revolution. This study focuses on five paths to accelerate the market adoption of increasing clean energy and efficiency technologies: (1) expanding the portfolio of cleaner energy technology options; (2) leveraging the advantages of energy efficiency; (3) facilitating the development of increasing clean technologies, including renewables, nuclear, and cleaner fossil; (4) improving the existing technologies, systems, and infrastructure; and (5) leveling the playing field for cleaner energy technologies. The Power of Change: Innovation for Development and Deployment of Increasingly Clean Energy Technologies is a call for leadership to transform the United States energy sector in order to both mitigate the risks of greenhouse gas and other pollutants and to spur future economic growth. This study's focus on science, technology, and economic policy makes it a valuable resource to guide support that produces innovation to meet energy challenges now and for the future.