Download Free Natural Organic Matter In Drinking Water Book in PDF and EPUB Free Download. You can read online Natural Organic Matter In Drinking Water and write the review.

Approximately 77 percent of the freshwater used in the United States comes from surface-water sources and is subject to natural organic matter contamination according to the United States Geological Survey. This presents a distinct challenge to water treatment engineers. An essential resource to the latest breakthroughs in the characterization, treatment and removal of natural organic matter (NOM) from drinking water, Natural Organic Matter in Waters: Characterization and Treatment Methods focuses on advance filtration and treatment options, and processes for reducing disinfection byproducts. Based on the author’s years of research and field experience, this book begins with the characterization of NOM including: general parameters, isolation and concentration, fractionation, composition and structural analysis and biological testing. This is followed by removal methods such as inorganic coagulants, polyelectrolytes and composite coagulants. Electrochemical and membranes removal methods such as: electrocoagulation, electrochemical oxidation, microfiltration and ultrafiltration, nanofiltration and membrane fouling. Covers conventional as well as advanced NOM removal methods Includes characterization methods of NOM Explains removal methods such as: removal by coagulation, electrochemical, advanced oxidation, and integrated methods
The research reported on here sought to characterize natural organic matter (NOM) in dilute solutions and to isolate it without altering its properties, so that the effect of NOM in drinking water may be considered. Several NOM isolation methods were evaluated, including evaporation, reverse osmosis, nanofiltration, and adsorption. The effects of such isolation procedures on NOM's chemical composition and reactivity were considered. Based on these studies, the report presents conclusions regarding the feasibility and adequacy of in situ and ex situ techniques. Croue is affiliated with Laboratoire de Chimie de l'Eau de l'Environment, Universite de Poiters. Annotation copyrighted by Book News, Inc., Portland, OR.
Natural organic matter (NOM) generally significantly influences water treatment processes such as coagulation, oxidation, adsorption, and membrane filtration. In addition to aesthetic problems such as colour, taste and odour, NOM also contributes to the fouling of filtration membranes, serves as a precursor for disinfection by-products (DBPs) of health concern during disinfection/oxidation processes, increases the exhaustion and usage rate of activated carbon and may promote microbial growth in water distribution networks. The efficiency of drinking water treatment is affected by both the amount and composition of NOM. Proper NOM characterization enables the targeting of the problematic NOM fractions for removal and transformation. However, the characterization methods used are often laborious, time consuming and may involve extensive sample pre-treatment. High performance size exclusion chromatography and fluorescence excitation-emission matrices were used to characterize NOM relatively quickly and with minimal sample preparation. These and other tools were used to improve our understanding of NOM character and behaviour during drinking water treatment. The study demonstrates the potential of multiple NOM characterization tools for the selection, operation and monitoring of water treatment processes.
The book addresses the interdisciplinary area of water quality monitoring and binds together interests and competences within sensing technology, system behaviour, business needs, legislation, education, data handling, and artificial response algorithms.
This compilation covers all aspects of biodegradable organic matter in drinking water by addressing the improvement made to water treatment and quality during the last 20 years. This book is a must for researchers and a valuable reference and guidance tool for all water producers.
A core text on principles, laboratory/field methodologies, and data interpretation for fluorescence applications in aquatic science, for advanced students and researchers.
Wastewater treatment technology is undergoing a profound transformation due to the fundamental changes in regulations governing the discharge and disposal of h- ardous pollutants. Established design procedures and criteria, which have served the industry well for decades, can no longer meet the ever-increasing demand. Toxicity reduction requirements dictate in the development of new technologies for the treatment of these toxic pollutants in a safe and cost-effective manner. Fo- most among these technologies are electrochemical processes. While electrochemical technologies have been known and utilized for the tre- ment of wastewater containing heavy metal cations, the application of these p- cesses is only just a beginning to be developed for the oxidation of recalcitrant organic pollutants. In fact, only recently the electrochemical oxidation process has been rec- nized as an advanced oxidation process (AOP). This is due to the development of boron-doped diamond (BDD) anodes on which the oxidation of organic pollutants is mediated via the formation of active hydroxyl radicals.
This volume reviews the drinking water treatments in which AOPs display a high application potential. Firstly it reveals the typical supply sources and limitations of conventional technologies and critically reviews natural organic matter characterization and removal techniques, focusing mainly on AOP treatments. It then explores using AOPs for simultaneous inactivation/disinfection of several types of microorganisms, including highly resistant Cryptosporidium protozoa. Lastly, it discusses relevant miscellaneous topics, like the most promising AOP solid catalysts, the regime change of Fenton-like processes toward continuous reactors, the application of chemometrics for process optimization, the impact on disinfection byproducts and the tracing of toxicity during AOP treatments. This work is a useful reference for researchers and students involved in water technologies, including analytical and environmental chemistry, chemical and environmental engineering, toxicology, biotechnology, and related fields. It is intended to encourage industrial and public-health scientists and decision-makers to accelerate the application of AOPs as technological alternatives for the improvement of drinking water treatment plants.