Download Free Nanowire Electronics Book in PDF and EPUB Free Download. You can read online Nanowire Electronics and write the review.

This book gives a comprehensive overview of recent advances in developing nanowires for building various kinds of electronic devices. Specifically the applications of nanowires in detectors, sensors, circuits, energy storage and conversion, etc., are reviewed in detail by the experts in this field. Growth methods of different kinds of nanowires are also covered when discussing the electronic applications. Through discussing these cutting edge researches, the future directions of nanowire electronics are identified.
A self-contained and up-to-date account of the current developments in the physics and technology of nanowire semiconductor devices.
The challenge for producing “invisible” electronic circuitry and opto-electronic devices is that the transistor materials must be transparent to visible light yet have good carrier mobilities. This requires a special class of materials having “contra-indicated properties” because from the band structure point of view, the combination of transparency and conductivity is contradictory. Structured to strike a balance between introductory and advanced topics, this monograph juxtaposes fundamental science and technology / application issues, and essential materials characteristics versus device architecture and practical applications. The first section is devoted to fundamental materials compositions and their properties, including transparent conducting oxides, transparent oxide semiconductors, p-type wide-band-gap semiconductors, and single-wall carbon nanotubes. The second section deals with transparent electronic devices including thin-film transistors, photovoltaic cells, integrated electronic circuits, displays, sensors, solar cells, and electro-optic devices. Describing scientific fundamentals and recent breakthroughs such as the first “invisible” transistor, Transparent Electronics: From Synthesis to Applications brings together world renowned experts from both academia, national laboratories, and industry.
This book explores the impacts of important material parameters on the electrical properties of indium arsenide (InAs) nanowires, which offer a promising channel material for low-power electronic devices due to their small bandgap and high electron mobility. Smaller diameter nanowires are needed in order to scale down electronic devices and improve their performance. However, to date the properties of thin InAs nanowires and their sensitivity to various factors were not known. The book presents the first study of ultrathin InAs nanowires with diameters below 10 nm are studied, for the first time, establishing the channel in field-effect transistors (FETs) and the correlation between nanowire diameter and device performance. Moreover, it develops a novel method for directly correlating the atomic-level structure with the properties of individual nanowires and their device performance. Using this method, the electronic properties of InAs nanowires and the performance of the FETs they are used in are found to change with the crystal phases (wurtzite, zinc-blend or a mix phase), the axis direction and the growth method. These findings deepen our understanding of InAs nanowires and provide a potential way to tailor device performance by controlling the relevant parameters of the nanowires and devices.
One-dimensional nanostructures, such as nanowires, have drawn extensive research interests in the recent years. The smaller size brings unique properties to the nanowires due to the finite size effect (quantum confinement effects). The unique geometrical features of the nanowires bring their utilization in many practical applications in the recent advanced technology. This book provides an updated review on fabrication, properties, and applications of various nanowires. This book is aimed to provide solid foundation of nanowires to the students, scientists, and engineers working in the field of material science and condensed matter physics.
This book provides a comprehensive summary of nanowire research in the past decade, from the nanowire synthesis, characterization, assembly, to the device applications. In particular, the developments of complex/modulated nanowire structures, the assembly of hierarchical nanowire arrays, and the applications in the fields of nanoelectronics, nanophotonics, quantum devices, nano-enabled energy, and nano-bio interfaces, are focused. Moreover, novel nanowire building blocks for the future/emerging nanoscience and nanotechnology are also discussed.Semiconducting nanowires represent one of the most interesting research directions in nanoscience and nanotechnology, with capabilities of realizing structural and functional complexity through rational design and synthesis. The exquisite control of chemical composition, morphology, structure, doping and assembly, as well as incorporation with other materials, offer a variety of nanoscale building blocks with unique properties.
One dimensional electronic materials are expected to be key components owing to their potential applications in nanoscale electronics, optics, energy storage, and biology. Besides, compound semiconductors have been greatly developed as epitaxial growth crystal materials. Molecular beam and metalorganic vapor phase epitaxy approaches are representative techniques achieving 0D–2D quantum well, wire, and dot semiconductor III-V heterostructures with precise structural accuracy with atomic resolution. Based on the background of those epitaxial techniques, high-quality, single-crystalline III-V heterostructures have been achieved. III-V Nanowires have been proposed for the next generation of nanoscale optical and electrical devices such as nanowire light emitting diodes, lasers, photovoltaics, and transistors. Key issues for the realization of those devices involve the superior mobility and optical properties of III-V materials (i.e., nitride-, phosphide-, and arsenide-related heterostructure systems). Further, the developed epitaxial growth technique enables electronic carrier control through the formation of quantum structures and precise doping, which can be introduced into the nanowire system. The growth can extend the functions of the material systems through the introduction of elements with large miscibility gap, or, alternatively, by the formation of hybrid heterostructures between semiconductors and another material systems. This book reviews recent progresses of such novel III-V semiconductor nanowires, covering a wide range of aspects from the epitaxial growth to the device applications. Prospects of such advanced 1D structures for nanoscience and nanotechnology are also discussed.
Discover a comprehensive overview and advances in mechanics to design the cutting edge electronics Soft electronics systems, which include flexible and stretchable electronics, are an area of technology with the potential to revolutionize fields from healthcare to defense. Engineering for flexibility and stretchability without compromising electronic functions poses serious challenges, and extensive mechanics and engineering knowledge is required to meet these challenges. Mechanics of Flexible and Stretchable Electronics introduces a range of soft functional materials and soft structures and their potential applications in the construction of soft electronics systems. Its detailed attention to the mechanics of these materials and structures makes it an indispensable tool for scientists and engineers at the cutting edge of electronics technology. Mechanics of Flexible and Stretchable Electronics readers will also find: A detailed summary of recent advances in the field Detailed treatment of structures including kirigami, serpentine, wrinkles, and many more A multidisciplinary approach suited to a varied readership Mechanics of Flexible and Stretchable Electronics is ideal for electronics and mechanical engineers, solid state physicists, and materials scientists, as well as the libraries that support them.
Nanomedical Device and Systems Design: Challenges, Possibilities, Visions serves as a preliminary guide toward the inspiration of specific investigative pathways that may lead to meaningful discourse and significant advances in nanomedicine/nanotechnology. This volume considers the potential of future innovations that will involve nanomedical devic