Download Free Nanotechnology In Eco Efficient Construction Book in PDF and EPUB Free Download. You can read online Nanotechnology In Eco Efficient Construction and write the review.

As the environmental impact of existing construction and building materials comes under increasing scrutiny, the search for more eco-efficient solutions has intensified. Nanotechnology offers great potential in this area and is already being widely used to great success. Nanotechnology in eco-efficient construction is an authoritative guide to the role of nanotechnology in the development of eco-efficient construction materials and sustainable construction.Following an introduction to the use of nanotechnology in eco-efficient construction materials, part one considers such infrastructural applications as nanoengineered cement-based materials, nanoparticles for high-performance and self-sensing concrete, and the use of nanotechnology to improve the bulk and surface properties of steel for structural applications. Nanoclay-modified asphalt mixtures and safety issues relating to nanomaterials for construction applications are also reviewed before part two goes on to discuss applications for building energy efficiency. Topics explored include thin films and nanostructured coatings, switchable glazing technology and third generation photovoltaic (PV) cells, high-performance thermal insulation materials, and silica nanogel for energy-efficient windows. Finally, photocatalytic applications are the focus of part three, which investigates nanoparticles for pollution control, self-cleaning and photosterilisation, and the role of nanotechnology in manufacturing paints and purifying water for eco-efficient buildings.Nanotechnology in eco-efficient construction is a technical guide for all those involved in the design, production and application of eco-efficient construction materials, including civil engineers, materials scientists, researchers and architects within any field of nanotechnology, eco-efficient materials or the construction industry. - Provides an authoritative guide to the role of nanotechnology in the development of eco-efficient construction materials and sustainable construction - Examines the use of nanotechnology in eco-efficient construction materials - Considers a range of important infrastructural applications, before discussing applications for building energy efficiency
Covering the latest technologies, Nanotechnology in eco-efficient construction provides an authoritative guide to the role of nanotechnology in the development of eco-efficient construction materials and sustainable construction. The book contains a special focus on applications concerning concrete and cement, as nanotechnology is driving significant development in concrete technologies. The new edition has 14 new chapters, including 3 new parts: Mortars and concrete related applications; Applications for pavements and other structural materials; and Toxicity, safety handling and environmental impacts. Civil engineers requiring an understanding of eco-efficient construction materials, as well as researchers and architects within any field of nanotechnology, eco-efficient materials or the construction industry will find this updated reference to be highly valuable. - Addresses issues such as toxicity and LCA aspects - New chapters covering safety handling on occupational exposure of nanoparticles and the assessment of personal exposure to airborne nanomaterials - Discusses the effects of adding nano-particles on the durability and on the properties of geopolymers
Eco-efficient Construction and Building Materials reviews ways of assessing the environmental impact of construction and building materials. Part one discusses the application of life cycle assessment (LCA) methodology to building materials as well as eco-labeling. Part two includes case studies showing the application of LCA methodology to different types of building material, from cement and concrete to wood and adhesives used in building. Part three includes case studies applying LCA methodology to particular structures and components. - Reviews ways of assessing the environmental impact of construction and building materials - Provides a thorough overview, including strengths and shortcomings, of the life cycle assessment (LCA) and eco-labeling of eco-efficient construction and building materials - Includes case studies showing the application of LCA methodology to different types of building material, from cement and concrete to wood and adhesives used in building
Bio-based Materials and Biotechnologies for Eco-efficient Construction fills a gap in the published literature, discussing bio-based materials and biotechnologies that are crucial for a more sustainable construction industry. With comprehensive coverage and contributions from leading experts in the field, the book includes sections on Bio-based materials and biotechnologies for infrastructure applications, Bio-based materials and biotechnologies for building energy efficiency, and other applications, such as using biotechnology to reduce indoor air pollution, for water treatment, and in soil decontamination. The book will be an essential reference resource for academic researchers, civil engineers, contractors working in construction works, postgraduate students and other professionals. - Focuses on sustainability and green concepts in construction - Discusses recent trends on bio-based materials and biotechnologies for eco-efficient construction - Covers many important aspects, including infrastructure applications, energy efficiency for building construction, and air, water and soil related problems
This book presents the current state of knowledge on nanomaterials and their use in buildings, ranging from glazing and vacuum insulation to PCM composites. It also discusses recent applications in organic photovoltaics, photo-bioreactors, bioplastics and foams, making it an exciting read while also providing copious references to current research and applications for those wanting to pursue possible future research directions. Derek Clements-Croome, Emeritus Professor in Architectural Engineering, University of Reading (From the Foreword) Demonstrating how higher energy efficiency in new and existing buildings can help reduce global greenhouse gas emissions, this book details the way in which new technologies, manufacturing processes and products can serve to abate emissions from the energy sector and offer a cost-effective means of improving competitiveness and drive employment. Maximizing reader insights into how nano and biotech materials – such as aerogel based plasters, thermochromic glazings and thermal energy adsorbing glass, amongst others – can provide high energy efficiency performance in buildings, it provides practitioners in the field with an important high-tech tool to tackle key challenges and is essential reading for civil engineers, architects, materials scientists and researchers in the area of the sustainability of the built environment.
This Handbook focuses on the recent advancements in Safety, Risk, Ethical Society and Legal Implications (ESLI) as well as its commercialization of nanotechnology, such as manufacturing. Nano is moving out of its relaxation phase of scientific route, and as new products go to market, organizations all over the world, as well as the general public, are discussing the environmental and health issues associated with nanotechnology. Nongovernmental science organizations have long since reacted; however, now the social sciences have begun to study the cultural portent of nanotechnology. Societal concerns and their newly constructed concepts, show nanoscience interconnected with the economy, ecology, health, and governance. This handbook addresses these new challenges and is divided into 7 sections: Nanomaterials and the Environment; Life Cycle Environmental Implications of Nanomanufacturing; Bioavailability and Toxicity of Manufactured Nanoparticles in Terrestrial Environments; Occupational Health Hazards of Nanoparticles; Ethical Issues in Nanotechnology; Commercialization of Nanotechnology; Legalization of Nanotechnology.
Eco-efficient concrete is a comprehensive guide to the characteristics and environmental performance of key concrete types.Part one discusses the eco-efficiency and life cycle assessment of Portland cement concrete, before part two goes on to consider concrete with supplementary cementitious materials (SCMs). Concrete with non-reactive wastes is the focus of part three, including municipal solid waste incinerator (MSWI) concrete, and concrete with polymeric, construction and demolition wastes (CDW). An eco-efficient approach to concrete carbonation is also reviewed, followed by an investigation in part four of future alternative binders and the use of nano and biotech in concrete production.With its distinguished editors and international team of expert contributors, Eco-efficient concrete is a technical guide for all professionals, researchers and academics currently or potentially involved in the design, manufacture and use of eco-efficient concrete. - The first part of the book examines the eco-efficiency and life cycle assessment of Portland cement concrete - Chapters in the second part of the book consider concrete with supplementary cementitious materials, including properties and performance - Reviews the eco-efficient approach to concrete carbonation
A first step in developing a clean and sustainable future is to think differently about everyday products, in particular how they influence energy use. Green Nanotechnology: Solutions for Sustainability and Energy in the Built Environment explores the science and technology of tiny structures that have a huge potential to improve quality of life wh
The importance of nanotechnology related research and development has become recognised worldwide. Substantial public and private investment is now being ploughed into research and development in a number of industrial sectors, where nanotechnology has become established and has led to new commercial products. The construction industry, having major economic significance with nano-scale research and development which is only emerging, offers a wide scope for exploitation of nanotechnology. With international contributions from experts in the field, Nanotechnology in Construction amalgamates previously fragmented research and emerging trends. It reflects the inherent multi-disciplinary nature of nano-scale research in construction and contributions cover a wide spectrum, from highly scientific investigations to futuristic applications. The book is organised into four broad sections, the first reviews and analyses the prospects of exploitation of nanotechnology in construction, the second discusses novel tools and their capabilities, the final two sections show existing significant products where nanotechnology has been already been exploited or where product development is under-way. Nanotechnology in Construction will appeal to researchers already working in this field as well as those wishing to enter it. It will also inform governmental and other funding agencies of the most promising future directions and their related timescales. Practical applications are considered and explanations of the underlying basics are given, raising awareness and understanding of what nanotechnology can offer to construction professionals in general.
Bio-based Materials and Biotechnologies for Eco-efficient Construction fills a gap in the published literature, discussing bio-based materials and biotechnologies that are crucial for a more sustainable construction industry. With comprehensive coverage and contributions from leading experts in the field, the book includes sections on Bio-based materials and biotechnologies for infrastructure applications, Bio-based materials and biotechnologies for building energy efficiency, and other applications, such as using biotechnology to reduce indoor air pollution, for water treatment, and in soil decontamination. The book will be an essential reference resource for academic researchers, civil engineers, contractors working in construction works, postgraduate students and other professionals.