Download Free Nanotechnology For Sustainable Water Resources Book in PDF and EPUB Free Download. You can read online Nanotechnology For Sustainable Water Resources and write the review.

In this book, we have summarized recent progresses due to novel nanomaterials for sustainable water resources. Book provides a summary of the state of the art knowledge to scientists, engineers and policy makers, about recent developments due to nanotechnology for sustainable water resources arena. The advances in sustainable water resources technologies in the context of modern society’s interests will be considered preferably which allow to identify grand challenges and directions for future research. The book contributors have been selected from all over the world and the essential functions of the nanotechnologies have presented rather than their anticipated applications. Moreover, up to date knowledge on economy, toxicity and regulation related to nanotechnology are presented in detail. In the end, role of nanotechnology for green and sustainable future has also been briefly debated.
In this book, we have summarized recent progresses due to novel nanomaterials for sustainable water resources. Book provides a summary of the state of the art knowledge to scientists, engineers and policy makers, about recent developments due to nanotechnology for sustainable water resources arena. The advances in sustainable water resources technologies in the context of modern society’s interests will be considered preferably which allow to identify grand challenges and directions for future research. The book contributors have been selected from all over the world and the essential functions of the nanotechnologies have presented rather than their anticipated applications. Moreover, up to date knowledge on economy, toxicity and regulation related to nanotechnology are presented in detail. In the end, role of nanotechnology for green and sustainable future has also been briefly debated.
Nowadays, novel water resources management strategies have been developed and applied by borrowing new concepts to overcome the water shortage crisis and balance the distribution of water resources. Therefore, this book has been categorized in four main sections as follows. 1- Perspective, which consists of Climate change, New water resources, Inter-basin water transfer, Nanotechnology, Best management practices by low impact development strategies, Land use, Land planning, and Overland production chapters. 2- Challenges, which consists of Water and sustainable development and Comprehensive and integrated water management chapters. 3- Concepts, which consists of Virtual water, Water footprint, and Water-Food-Energy-Environment nexus chapters, and 4- Necessities which consists of Water security, Food security, Inactive (passive) defense, Water conflicts and water war, Forensic engineering, and Citizen sciences chapters. It should be added that all of these concepts have been integrated into this unique reference, which can help students, academics and practitioners professors who are interested to know more about the new concepts in water resources.
This book illustrates how green nanotechnology is being used to promote sustainability, including applications in environmental remediation and energy optimization.
Rapid population growth, urbanisation and industrialisation have caused serious problems in terms of water pollution and the supply of safe water. Solutions for monitoring pollutants in water and for removing them are urgently needed and they must be both efficient and sustainable. Recent advances in emerging environmental nanotechnologies provide promising solutions for these issues. The physical and chemical properties of nanomaterials can be tailored by controlling attributes such as their size, shape, composition, and surface, so that they can be both highly specific and highly efficient. This makes them perfect platforms for a variety of environmental applications including sensing, treatment and remediation. Providing an array of cutting-edge nanotechnology research in water applications, including sensing, treatment, and remediation, as well as a discussion of progress in the rational design and engineering of nanomaterials for environmental applications, this book is a valuable reference for researchers working in applications for nanotechnology, environmental chemistry and environmental engineering as well as those working in the water treatment industry.
Nanotechnology in Water and Waste Water Treatment: Theory and Applications explores the unique physicochemical and surface properties of nanoparticles and highlights the advantages they provide for engineering applications. Applications covered include the generation of fresh water from surface water and seawater, the prevention of the contamination of the environment, and the creation of effective and efficient methods for remediation of polluted waters. Each chapter covers a different nanotechnology-based approach and examines the basic principles, practical applications, recent breakthroughs and associated limitations. This book is ideal for researchers and professionals in the fields of nanotechnology, water treatment and desalination. In addition, it is also ideal for postgraduate students, industry and government professionals, managers and policymakers. - Gathers together the latest research and developments in the field from journal articles and conference proceedings - Discusses and evaluates the most economical and low cost treatment technologies - Presents information from related fields on the applicability, strengths and weaknesses of particular nanomaterials in key applications, thus allowing for the continuation and expansion of research in a range of fields
Sustainable Nanotechnology for Environmental Remediation provides a single-source solution to researchers working in environmental, wastewater management, biological and composite nanomaterials applications. It addresses the potential environmental risks and uncertainties surrounding the use of nanomaterials for environmental remediation, giving an understanding of their impact on ecological receptors in addition to their potential benefits. Users will find comprehensive information on the application of state-of-the-art processes currently available to synthesize advanced green nanocomposite materials and biogenic nanomaterials. Other sections explore a wide range of promising approaches for green nanotechnologies and nanocomposites preparations. Case study chapters connect materials engineering and technology to the social context for a sustainable environment. Applications and different case studies provide solutions to the challenges faced by industry, thus minimizing negative social impacts. - Provides information on the use of biologically mediated synthetic protocols to generate nanomaterials - Discusses a wide range of promising?approaches?for?green nanotechnologies and nanocomposites preparations - Presents novel fabrication techniques for bionanocomposites, paving the way for the development of a new generation of advanced materials that can cope with spatiotemporal multi-variant environments
Presents recent challenges related to new forms of pollution from industries and discusses adequate state-of-the-art technologies capable to remediate such forms of pollution. Over the past few decades the boom in the industrial sector has contributed to the release in the environment of pollutants that have no regulatory status and which may have significant impact on the health of humans and animals. These pollutants also referred to as "emerging pollutants", are mostly aromatic compounds which derive from excretion of pharmaceutical, industrial effluents and municipal discharge. It is recurrent these days to find water treatment plants which no longer produce water that fits the purpose of domestic consumption based on newly established guidelines. This situation has prompted water authorities and researchers to develop tools for proper prediction and control of the dispersion of pollutants in the environment to ensure that appropriate measures are taken to prevent the occurrence of outbreaks due to sudden load of these pollutants in the water system. The chapters in this book cover a wide range of nano and bio-based techniques that have been designed for the real time detection of emerging contaminants in environmental water sources, geochemical models that are continuously improved for the prediction of inorganic contaminants migration from the mine solid wastes into ground and surface waters. Remediation strategies are also discussed and include effective techniques based on nanotechnology, advanced membrane filtration, oxidative and bio-degradation processes using various types of nanocatalysts, biocatalysts or supporting polymer matrices which are under advanced investigations for their implementation at large scale for the removal of recalcitrant pollutants from polluted water. Nano and Bio-Based Technologies for Wastewater Treatment: Prediction and Control Tools for the Dispersion of Pollutants in the Environment is divided is two sections. The first section covers the occurrence of emerging pollutants in environmental water while the second section covers state-of-the-art research on the removal of emerging pollutants from water using sustainable technologies. A total of 13 chapters addressing various topics related to the two sections are essentially based on recent developments in the respective field which could have a significant impact on the enhancement of the performance of wastewater treatment plants around the world, and especially in developing countries where access to clean and safe water remains a daily challenge.
Innovation in Nano-polysaccharides for Eco-sustainability: From Science to Industrial Applications presents fundamentals, advanced preparation methods, and novel applications for polysaccharide-based nanomaterials. Sections cover the fundamental aspects of polysaccharides and nano-polysaccharides, including their structure and properties, surface modification, processing and characterization. Key considerations are explained in detail, including the connection between the substituents of polysaccharides and their resulting physical properties, renewable resources, their sustainable utilization, and specific high value applications, such as pharmaceuticals, photocatalysts, energy, and wastewater treatment, and more. This is a valuable resource for researchers, scientists, and advanced students across bio-based polymers, nanomaterials, polymer chemistry, sustainable materials, biology, materials science and engineering, and chemical engineering. In industry, this book will support scientists, R&D, and engineers looking to utilize bio-based materials in advanced industrial applications. - Covers the fundamentals, mechanisms, preparation methods, unique properties and performance of nano-polysaccharide materials - Explores sustainable applications of nano-polysaccharides in areas such as pharmaceuticals, energy and wastewater treatment - Addresses key challenges, including the implementation of sustainable concepts in chemical design and paths to scalability and commercialization
Development of advanced technologies is a critical component in overcoming the looming water crisis. Stressing emerging technologies and strategies that facilitate water sustainability for future generations, the second volume in the two-volume set Sustainable Water Management and Technologies provides current and forthcoming technologies research, development, and applications to help ensure availability of water for all. The book emphasizes emerging nanotechnology, biotechnology, and information technology?applications as well as sustainable processes and products to protect the environment and human health, save water and energy, and minimize material use. It also discusses such topics as groundwater transport, protection, and remediation, industrial and wastewater treatment, reuse, and disposal, membrane technology for water purification and desalination, treatment and disposal in unconventional oil and gas development, biodegradation, and bioremediation for soil and water. ? Stresses emerging technologies and strategies that facilitate water sustainability. Covers a wide array of topics including drinking water, wastewater, and groundwater treatment, protection, and remediation. Discusses oil and gas drilling impacts and pollution prevention, membrane technology for water desalination and purification, biodegradation, and bioremediation for soil and water. Details emerging nanotechnology, biotechnology, and information technology applications, as well as sustainable processes and products.